Extracellular vesicles (EVs) are mediators of intercellular communication, recently recognised for their clinical applications. Accurate characterisation and quantification of EVs are critical for understanding of their function and clinical relevance. Many platforms utilise fluorescence for EV characterisation, frequently labelling surface proteins to identify EVs.
View Article and Find Full Text PDFTuberculosis (TB) remains a leading cause of death among infectious diseases, particularly in poor countries. Viral infections, multidrug-resistant and ex-tensively drug-resistant TB strains, as well as the coexistence of chronic illnesses such as diabetes mellitus (DM) greatly aggravate TB morbidity and mortality. DM [particularly type 2 DM (T2DM)] and TB have converged making their control even more challenging.
View Article and Find Full Text PDFAutophagy is a prosurvival mechanism for the clearance of damaged cellular components, specifically upon exposure to various stressors. In lymphoid organs, excessive ethanol consumption increases lymphocyte apoptosis, resulting in immunosuppression. However, ethanol-induced autophagy and related phagocytosis of apoptotic lymphocytes in the spleen have not been studied yet.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are lipid bilayer structures released by all cells that mediate cell-to-cell communication via the transfer of bioactive cargo. Because of the natural origin of EVs, their efficient uptake by recipient cells, capacity to stabilize and transport biomolecules and their potential for cell/tissue targeting and preferential uptake by cancer cells, they have enormous potential for bioengineering into improved and targeted drug delivery systems. In this work, we investigated the use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as a tool to measure the loading of platinum-based chemotherapeutic agents.
View Article and Find Full Text PDFThe development of novel screening tests aims to support early asymptomatic diagnosis and subtyping patients according to similar traits in the heterogeneous cancer cohort. Extracellular vesicles (EVs) are promising candidates for the detection of disease markers from bodily fluids, but limitations in the standardisation of isolation methods and the intrinsic EV heterogeneity obtained from liquid biopsies are currently obstacles to clinical adoption. Here, cellular responses to cancer EVs were initially explored as potential complementary biomarkers for stage separation using colorectal cancer (CRC) SW480 and SW620 cell line models.
View Article and Find Full Text PDF