Corticotropin-releasing hormone (CRH) signaling through its cognate receptors, CRHR1 and CRHR2, contributes to diverse stress-related functions in the mammalian brain. Whereas CRHR2 is predominantly expressed in choroid plexus and blood vessels, CRHR1 is abundantly expressed in neurons in discrete brain regions, including the neocortex, hippocampus and nucleus accumbens. Activation of CRHR1 influences motivated behaviors, emotional states, and learning and memory.
View Article and Find Full Text PDFIntroduction: Corticotropin-releasing factor receptor 1 (CRFR1) is a key regulator of neuroendocrine and behavioral stress responses. Previous studies have demonstrated that CRFR1 in certain hypothalamic and preoptic brain areas is modified by chronic stress and during the postpartum period in female mice, although the potential hormonal contributors to these changes are unknown.
Methods: This study focused on determining the contributions of hormones associated with stress and the maternal period (glucocorticoids, prolactin, estradiol/progesterone) on CRFR1 levels using a CRFR1-GFP reporter mouse line and immunohistochemistry.
Introduction: Corticotropin-releasing hormone (CRH) signaling through its cognate receptors, CRHR1 and CRHR2, contributes to diverse stress-related functions in the mammalian brain. Whereas CRHR2 is predominantly expressed in choroid plexus and blood vessels, CRHR1 is abundantly expressed in neurons in discrete brain regions, including the neocortex, hippocampus and nucleus accumbens. Activation of CRHR1 influences motivated behaviors, emotional states, and learning and memory.
View Article and Find Full Text PDFObjectives: Chronic constipation is a common condition in pediatric patients worldwide and is associated with decreased quality of life. Inpatient management of constipation is required when outpatient therapy fails and a child becomes obstipated, and unable to pass stool or gas. There is a growing body of evidence regarding different management strategies for pediatric obstipation.
View Article and Find Full Text PDFCircadian rhythms are internal biological rhythms driving temporal tissue-specific, metabolic programs. Loss of the circadian transcription factor BMAL1 in the paraventricular nucleus (PVN) of the hypothalamus reveals its importance in metabolic rhythms, but its functions in individual PVN cells are poorly understood. Here, loss of BMAL1 in the PVN results in arrhythmicity of processes controlling energy balance and alters peripheral diurnal gene expression.
View Article and Find Full Text PDF