Publications by authors named "N J DeYonker"

The millimeter/submillimeter spectrum of magnesium chloride (MgCl) has been observed in two new electronic excited states, (3)Σ and (4)Σ, using direct absorption methods. The molecule was synthesized in a mixture of Cl, argon, and magnesium vapor. For the (3)Σ state, multiple rotational transitions were measured in the = 0 level for all six isotopologues (MgCl, MgCl, MgCl, MgCl, MgCl, and MgCl), as well as up to = 13 for MgCl.

View Article and Find Full Text PDF

Most QM-cluster models of enzymes are constructed based on X-ray crystal structures, which limits comparison to structure and mechanism. The active site of chorismate mutase from and the enzymatic transformation of chorismate to prephenate is used as a case study to guide construction of QM-cluster models built first from the X-ray crystal structure, then from molecular dynamics (MD) simulation snapshots. The Residue Interaction Network ResidUe Selector (RINRUS) software toolkit, developed by our group to simplify and automate the construction of QM-cluster models, is expanded to handle MD to QM-cluster model workflows.

View Article and Find Full Text PDF

Late-transition-metal catalysts for polymerization of olefins have drawn a significant amount of attention owing to their ability to tolerate and incorporate polar comonomers. However, a systematic way to experimentally quantify the electronic properties of the ligands used in these systems has not been developed. Quantified ligand parameters will allow for the rational design of tailored polymerization catalysts, which would target specific polymer properties.

View Article and Find Full Text PDF

The methyl transfer reaction between SAM and glycine catalyzed by glycine -methyltransferase (GNMT) was examined using QM-cluster models generated by Residue Interaction Network ResidUe Selector (). is a Python-based tool that can build QM-cluster models with rules-based processing of the active site residue interaction network. This way of enzyme model-building allows quantitative analysis of residue and fragment contributions to kinetic and thermodynamic properties of the enzyme.

View Article and Find Full Text PDF

In this computational study, we describe a self-consistent trajectory simulation approach to capture the effect of neutral gas pressure on ion-ion mutual neutralization (MN) reactions. The electron transfer probability estimated using Landau-Zener (LZ) transition state theory is incorporated into classical trajectory simulations to elicit predictions of MN cross sections in vacuum and rate constants at finite neutral gas pressures. Electronic structure calculations with multireference configuration interaction and large correlation consistent basis sets are used to derive inputs to the LZ theory.

View Article and Find Full Text PDF