Publications by authors named "N Inogamov"

Here we demonstrate the results of investigating the damage threshold of a LiF crystal after irradiating it with a sequence of coherent femtosecond pulses using the European X-ray Free Electron Laser (EuXFEL). The laser fluxes on the crystal surface varied in the range ∼ 0.015-13 kJ/cm per pulse when irradiated with a sequence of 1-100 pulses (t ∼ 20 fs, E = 9 keV).

View Article and Find Full Text PDF

Interaction of ultrashort laser pulses with materials can bring the latter to highly non-equilibrium states, where the electronic temperature strongly differs from the ionic one. The properties of such excited material can be considerably different from those in a hot, but equilibrium state. The reliable modeling of laser-irradiated target requires careful analysis of its properties in both regimes.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding fracture phenomena at high strain rates is crucial for various scientific fields, including applied science, technology, and fundamental science like geology and laser interactions.
  • Successful research in this area requires detailed analysis at multiple scales, from atomic to macroscopic, which has typically been done through large-scale simulations.
  • Recent advancements using a combination of high-power laser and femtosecond x-ray probes have allowed for real-time monitoring of these dynamic fracture processes in tantalum, revealing critical data related to spallation and stress responses in materials.
View Article and Find Full Text PDF

Hollow reduced-symmetry resonant plasmonic nanostructures possess pronounced tunable optical resonances in the UV-vis-IR range, being a promising platform for advanced nanophotonic devices. However, the present fabrication approaches require several consecutive technological steps to produce such nanostructures, making their large-scale fabrication rather time-consuming and expensive. Here, we report on direct single-step fabrication of large-scale arrays of hollow parabolic- and cone-shaped nanovoids in silver and gold thin films, using single-pulse femtosecond nanoablation at high repetition rates.

View Article and Find Full Text PDF

Laser-produced surface nanostructures show considerable promise for many applications while fundamental questions concerning the corresponding mechanisms of structuring are still debated. Here, we present a simple physical model describing those mechanisms happened in a thin metal film on dielectric substrate irradiated by a tightly focused ultrashort laser pulse. The main ingredients included into the model are (i) the film-substrate hydrodynamic interaction, melting and separation of the film from substrate with velocity increasing with increase of absorbed fluence; (ii) the capillary forces decelerating expansion of the expanding flying film; and (iii) rapid freezing into a solid state if the rate of solidification is comparable or larger than hydrodynamic velocities.

View Article and Find Full Text PDF