A facile approach of chemical bath deposition was proposed to fabricate direct synthesis of silver sulphide (AgS) on nickel (Ni) mesh without involvement for binders for supercapacitor electrodes. The phase purity, structure, composition, morphology, microstructure of the as-fabricated AgS electrode was validated from its corresponding comprehensive characterization tools. The electrochemical characteristics of the AgS electrodes were evaluated by recording the electrochemical measurements such as cyclic voltammetry and charge/discharge profile in a three electrode configuration system.
View Article and Find Full Text PDFWe demonstrate electrochemical cycling-induced reduction of MoO to monoclinic molybdenum dioxide and molybdenum sub-oxides (MoO), which exhibit excellent electrochemical hydrogen evolution reaction (HER) activity. The conversion of MoO during cycling was probed; after 250 cycles, the redox peaks were found to diminish with an onset potential shift and increased HER current density. At 400 cycles, the insertion/deinsertion processes observed in the initial cycles are completely absent and the HER current density is enhanced to the maximum.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2016
Materials which possess high specific capacitance in device configuration with low cost are essential for viable application in supercapacitors. Herein, a flexible high-energy supercapacitor device was fabricated using porous activated high-surface-area carbon derived from aloe leaf (Aloe vera) as a precursor. The A.
View Article and Find Full Text PDF