Publications by authors named "N I Rechkunova"

Article Synopsis
  • * XPA is a key protein in NER, involved in later stages of the repair process, and works alongside the FEN1 enzyme, which is essential for completing newly synthesized DNA strands and also plays a role in base excision repair.
  • * Research shows that XPA and FEN1 can form complexes both with and without DNA present, suggesting they interact directly; however, XPA appears to slightly reduce FEN1's activity, indicating a regulatory role in DNA repair processes.
View Article and Find Full Text PDF

Non-membrane compartments or biomolecular condensates play an important role in the regulation of cellular processes including DNA repair. Here, an ability of XRCC1, a scaffold protein involved in DNA base excision repair (BER) and single-strand break repair, to form protein-rich microphases in the presence of DNA duplexes was discovered. We also showed that the gap-filling activity of BER-related DNA polymerase λ (Pol λ) is significantly increased by the presence of XRCC1.

View Article and Find Full Text PDF

DNA polymerase λ (Polλ) belongs to the same structural X-family as DNA polymerase β, the main polymerase of base excision repair. The role of Polλ in this process remains not fully understood. A significant difference between the two DNA polymerases is the presence of an extended non-catalytic N-terminal region in the Polλ structure.

View Article and Find Full Text PDF

Nucleotide excision repair (NER) is a central DNA repair pathway responsible for removing a wide variety of DNA-distorting lesions from the genome. The highly choreographed cascade of core NER reactions requires more than 30 polypeptides. The xeroderma pigmentosum group A (XPA) protein plays an essential role in the NER process.

View Article and Find Full Text PDF