ROS-dependent induction of oxidative damage can be used as a trigger initiating genetically determined non-specific protection in plant cells and tissues. Plants are potentially able to withstand various specific (toxic, osmotic) factors of abiotic effects, but do not have sufficient or specific sensitivity to form an adequate effective response. In this work, we demonstrate one of the possible approaches for successful cold acclimation through the formation of effective protection of photosynthetic structures due to the insertion of the heterologous gene into the tobacco genome under the control of the constitutive promoter and equipped with a signal sequence targeting the protein to plastid.
View Article and Find Full Text PDFBackground: Salt stress is a multicomponent phenomenon; it includes many processes that directly or indirectly affect the plant. Attempts have been made to comprehensively consider the processes of salt stress in plants (variety Orenburgskaya 22) and (variety Zolotaya).
Methods: The study used methods of light and fluorescence microscopy, methods of immunofluorodetection, expression of DNA methyltransferase genes, genes of the ion transporter and superoxide dismutase families, as well as biochemical determination of total antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) reagent.
Hypoxia is one of the common abiotic stresses that negatively affects the development and productivity of agricultural crops. Quercetin is used to protect plants from oxidative stress when exposed to environmental stressors. O deficiency leads to impaired development and morphometric parameters in wheat varieties Orenburgskaya 22 ( L.
View Article and Find Full Text PDFCentrosomes are organelles that nucleate microtubules via the activity of gamma-tubulin ring complexes (γ-TuRC). In the developing brain, centrosome integrity is central to the progression of the neural progenitor cell cycle, and its loss leads to microcephaly. We show that NPCs maintain centrosome integrity via the endocytic adaptor protein complex-2 (AP-2).
View Article and Find Full Text PDFVarious stressors lead to an increase in ROS and damage to plant tissues. Plants have a powerful antioxidant system (AOS), which allows them to neutralize excess ROS. We detected an intense fluorescent glow of ROS in the cells of the cap, meristem, and elongation zones in the roots of wheat (Orenburgskaya 22 variety) and (Zolotaya variety).
View Article and Find Full Text PDF