We investigate, by direct numerical simulations and for certain parametric regimes, the dynamics of the damped and forced nonlinear Schrödinger (NLS) equation in the presence of a time-periodic forcing. It is thus revealed that the wave number of a plane-wave initial condition dictates the number of emerged Peregrine-type rogue waves at the early stages of modulation instability. The formation of these events gives rise to the same number of transient "triangular" spatiotemporal patterns, each of which is reminiscent of the one emerging in the dynamics of the integrable NLS in its semiclassical limit, when supplemented with vanishing initial conditions.
View Article and Find Full Text PDFWe consider the Adlam-Allen (AA) system of partial differential equations, which, arguably, is the first model that was introduced to describe solitary waves in the context of propagation of hydrodynamic disturbances in collisionless plasmas. Here, we identify the solitary waves of the model by implementing a dynamical systems approach. The latter suggests that the model also possesses periodic wave solutions-which reduce to the solitary wave in the limiting case of an infinite period-as well as rational solutions that are obtained herein.
View Article and Find Full Text PDFIn the present work, we aim at taking a step towards the spectral stability analysis of Peregrine solitons, i.e., wave structures that are used to emulate extreme wave events.
View Article and Find Full Text PDFThe dynamical behavior of a higher-order cubic Ginzburg-Landau equation is found to include a wide range of scenarios due to the interplay of higher-order physically relevant terms. We find that the competition between the third-order dispersion and stimulated Raman scattering effects gives rise to rich dynamics: this extends from Poincaré-Bendixson-type scenarios, in the sense that bounded solutions may converge either to distinct equilibria via orbital connections or to space-time periodic solutions, to the emergence of almost periodic and chaotic behavior. One of our main results is that third-order dispersion has a dominant role in the development of such complex dynamics, since it can be chiefly responsible (even in the absence of other higher-order effects) for the existence of periodic, quasiperiodic, and chaotic spatiotemporal structures.
View Article and Find Full Text PDF