Publications by authors named "N I Chernevskaya"

1. Oxytocin and vasopressin secretion from the neurohypophysis (NHP) is evoked by strongly patterned bursts of action potentials. We studied excitation-secretion coupling in single isolated terminals of rat NHP using patch clamp and capacitance detection techniques.

View Article and Find Full Text PDF

Stimulus-secretion coupling was monitored with capacitance detection in bovine chromaffin cells recorded in perforated patch mode and stimulated with trains of depolarizing pulses. A subset of stimulus trains evoked a response with a Ca2+-exocytosis relationship identical to that obtained for single depolarizing pulses (Engisch and Nowycky, 1996). Other trains evoked responses with enhanced or diminished Ca2+ efficacy relative to this input-output function.

View Article and Find Full Text PDF

The ability of cell adhesion molecules (CAMs) to transduce cell surface signals into intracellular responses is critical for developing neurons, particularly during axonal pathfinding and targeting. It has been suggested that different CAMs can promote neuronal outgrowth via activation of common neuronal CAM-specific second-messenger pathways, although the elements involved in this cascade could differ. Limbic system-associated membrane protein (LAMP), a member of the Ig superfamily, is a molecule that promotes cell adhesion and neurite outgrowth from specific populations of fetal neurons.

View Article and Find Full Text PDF

The coupling between divalent cations and exocytosis of large dense-cored vesicles (LDCV) was studied with capacitance-detection techniques in nerve terminals of the rat neurohypophysis (NHP) and bovine chromaffin cells. Ba2+ substitution for Ca2+ produced kinetically distinct responses in the two preparations. In NHP terminals, Ba2+ ions behave as weak substitutes for Ca2+.

View Article and Find Full Text PDF

The link between electrical activity, Ca2+ entry through voltage-gated channels, and transmitter or hormone secretion is a central issue in neurobiology. In peptidergic nerve terminals of the mammalian neurohypophysis (NHP), secretion is elicited by patterned bursts of action potentials (APs). All parameters of the bursts are important to elicit efficient secretion, including AP frequency, AP broadening, burst duration, and interburst interval (Leng, 1988).

View Article and Find Full Text PDF