Background: Fluid management is integral to hemodialysis, both to correct abnormalities in a patient's plasma composition and to maintain fluid balance. Consequently, accurate net fluid removal during treatment is a critical design element of hemodialysis machines. As dialyzers have evolved, with increased ranges of ultrafiltration coefficients available, it has become more challenging for dialysis machines to minimize errors in flow balance and net fluid removal.
View Article and Find Full Text PDFBackground And Objective: The SC+ haemodialysis system developed by Quanta Dialysis Technologies is a small, easy-to-use dialysis system designed to improve patient access to self-care and home haemodialysis. A prototype variant of the standard SC+ device with a modified fluidic management system generating a pulsatile push-pull dialysate flow through the dialyser during use has been developed for evaluation. It was hypothesized that, as a consequence of the pulsatile push-pull flow through the dialyser, the boundary layers at the membrane surface would be disrupted, thereby enhancing solute transport across the membrane, modifying protein fouling and maintaining the surface area available for mass and fluid transport throughout the whole treatment, leading to solute transport (clearance) enhancement compared to normal haemodialysis (HD) operation.
View Article and Find Full Text PDFObjective: The primary aim of this study was to evaluate the effect of increased frequency of dialysis (FHD) on change in fluid status and body composition using segmental bioimpedance.
Approach: Twelve stable HD patients were switched from 3 times/week to 6 times/week HD (FHD). Systolic blood pressure (SBP), body mass and body mass index (BMI) were measured pre- and post-HD.
Purpose: We have previously demonstrated widespread microbial contamination in the dialysis and replacement fluid circuits of bicarbonate-buffered, continuous renal replacement therapies (CRRTs). It is not known whether different CRRT fluids have an impact on bacterial activity.
Methods: In this study the in vitro growth and biofilm formation associated with seven strains of bacteria (Burkholderia cepacia, Escherichia coli, Staphylococcus aureus, Stenotrophomonas maltophilia, Pseudomonas aeruginosa, Pseudomonas fluorescens, and Staphylococcus epidermidis) in five CRRT fluids (Prismocitrate, Monosol S, Accusol 35, tri-sodium citrate and Ci-Ca K2) were studied.
Purpose: Microbial contamination is often present in dialysate used for hemodialysis. Small single-stranded bacterial DNA sequences are capable of activating human inflammatory pathways, through mechanisms that include the Toll-like-receptor 9, and dialysis patients frequently show severe inflammation. Since these molecules have been found in dialysate and in patients' bloodstreams, we studied the potential of low-molecular weight DNA sequences, of the same structure as found in bacteria, to cross from the dialyzer circuit to the blood circuit of a dialysis filter.
View Article and Find Full Text PDF