Understanding the mechanisms of assembly and disassembly of macromolecular structures in cells relies on solving biomolecular interactions. However, those interactions often remain unclear because tools to track molecular dynamics are not sufficiently resolved in time or space. In this study, we present a straightforward method for resolving inter- and intra-molecular interactions in cell adhesive machinery, using quantum dot (QD) based Förster resonance energy transfer (FRET) nanosensors.
View Article and Find Full Text PDFPolar cod (Boreogadus saida) is an endemic key species of the Arctic Ocean ecosystem. The ecology of this forage fish is well studied in Arctic shelf habitats where a large part of its population lives. However, knowledge about its ecology in the central Arctic Ocean (CAO), including its use of the sea-ice habitat, is hitherto very limited.
View Article and Find Full Text PDFIntegrating isothermal nucleic acid amplification strategies into immunoassays can significantly decrease analytical limits of detection (LODs). On the other hand, an amplification step adds time, complication, reagents, and costs to the assay format. To evaluate the pros and cons in the context of heterogeneous multistep immunoassays, we quantified prostate-specific antigen (PSA) with and without rolling circle amplification (RCA).
View Article and Find Full Text PDFHuman cystatin C (hCC) is a physiologically important protein that serves as intra- and extracellular cysteine proteinase inhibitor in homeostasis. However, in pathological states it dimerizes and further oligomerizes accumulating into a toxic amyloid. HCC forms an active monomer in the extracellular space and becomes an inactive dimer when internalized in cellular organelles.
View Article and Find Full Text PDF