Publications by authors named "N Hendler"

As phenomics data volume and dimensionality increase due to advancements in sensor technology, there is an urgent need to develop and implement scalable data processing pipelines. Current phenomics data processing pipelines lack modularity, extensibility, and processing distribution across sensor modalities and phenotyping platforms. To address these challenges, we developed PhytoOracle (PO), a suite of modular, scalable pipelines for processing large volumes of field phenomics RGB, thermal, PSII chlorophyll fluorescence 2D images, and 3D point clouds.

View Article and Find Full Text PDF

The ability to manipulate small objects with focused laser beams opens a broad spectrum of opportunities in fundamental and applied studies, for which precise control over mechanical path and stability is required. Although conventional optical tweezers are based on refractive optics, the development of compact trapping devices that could be integrated within fluid cells is in high demand. Here, a plasmonic polarization-sensitive metasurface-based lens, embedded within a fluid, is demonstrated to provide several stable trapping centers along the optical axis.

View Article and Find Full Text PDF

Zanzibar has transitioned from malaria control to the pre-elimination phase, and the continued need for intermittent preventive treatment during pregnancy (IPTp) has been questioned. We conducted a prospective observational study to estimate placental malaria positivity rate among women who did not receive IPTp with sulfadoxine-pyrimethamine. A convenience sample of pregnant women was enrolled from six clinics on the day of delivery from August of 2011 to September of 2012.

View Article and Find Full Text PDF

Optically active bio-composite blends of conjugated polymers or oligomers are fabricated by complexing them with bovine submaxilliary mucin (BSM) protein. The BSM matrix is exploited to host hydrophobic extended conjugated π-systems and to prevent undesirable aggregation and render such materials water soluble. This method allows tuning the emission color of solutions and films from the basic colors to the technologically challenging white emission.

View Article and Find Full Text PDF

Good things come in threes: A new type of light emitting bio-composites allowing for the nanometric separation of the active components is demonstrated. A protein with large host-guest capacities is used for the encapsulation of a water-soluble composite dye in a nano-sized shell, which efficiently reduces Förster resonance energy transfer and related mechanisms. Blending of this bio-composite with multi-walled nanotubes increases the charge injection efficiency, in the electro-luminescent device.

View Article and Find Full Text PDF