Publications by authors named "N H Sarkar"

We report a 37-year-old male patient who had nonbilious vomiting, no passage of flatus, and recurring abdominal pain. This patient had de novo intestinal myeloid sarcoma (MS), a rare and chameleonic presentation of acute leukemia of myeloid origin. The initial diagnostic evaluation suggested Koch's abdomen, and surgical excision of the bowel was performed with a clinical suspicion of Koch's or lymphoma.

View Article and Find Full Text PDF

MicroRNAs (miRNAs/miRs) are small (18-25 nucleotides in length), endogenous, non-coding RNAs that typically repress gene expression by interacting with the 3'untranslated regions (3'UTRs) of target mRNAs in the cytoplasm. While most of the scientific community still views miRNAs as repressors of gene expression, this review highlights their non-canonical novel role in the nucleus as activators or silencers of target gene transcription through miRNA-promoter interaction. The mechanistic details of the transcriptional role of miRNAs are yet to be elucidated, however, they can be explained by prospective models.

View Article and Find Full Text PDF

COVID-19 is an emerging viral pandemic caused by SARS-CoV-2, which is the causative agent of unprecedented disease-causing public health threats globally. Worldwide, this outbreak is wreaking havoc due to failure in risk assessment regarding the urgency of the pandemic. As per the reports, many secondary complications which include neurological, nephrological, gastrointestinal, cardiovascular, immune, and hepatic abnormalities, are linked with COVID -19 infection which is associated with prominent respiratory disorders including pneumonia.

View Article and Find Full Text PDF

The Tactile Internet (TI) characterises the transformative paradigm that aims to support real-time control and haptic communication between humans and machines, heavily relying on a dense network of sensors and actuators. Non-Orthogonal Multiple Access (NOMA) is a promising enabler of TI that enhances interactions between sensors and actuators, which are collectively considered as users, and thus supports multiple users simultaneously in sharing the same Resource Block (RB), consequently offering remarkable improvements in spectral efficiency and latency. This article proposes a novel downlink power domain Single-Input Single-Output (SISO) NOMA communication scenario for TI by considering multiple users and a base station.

View Article and Find Full Text PDF