Publications by authors named "N H Packer"

Chondroitin sulphate (CS) is a sulphated glycosaminoglycan (GAG) polysaccharide found on proteoglycans (CSPGs) in extracellular and pericellular matrices. Chondroitinase ABC (CSase ABC) derived from Proteus vulgaris is an enzyme that has gained attention for the capacity to cleave chondroitin sulphate (CS) glycosaminoglycans (GAG) from various proteoglycans such as Aggrecan, Neurocan, Decorin etc. The substrate specificity of CSase ABC is well-known for targeting various structural motifs of CS chains and has gained popularity in the field of neuro-regeneration by selective degradation of CS GAG chains.

View Article and Find Full Text PDF
Article Synopsis
  • The Human Proteome Project (HPP) aims to identify every protein-coding gene’s isoform and integrate proteomics into studies of human health and disease.
  • Major updates include the retirement of neXtProt as the knowledge base, with UniProtKB now serving as the reference proteome, and GENCODE providing the target protein list.
  • Recent data shows that 93% of protein-coding genes have been expressed, leaving 1,273 non-expressed proteins, along with the introduction of a new scoring system for functional annotation of proteins.
View Article and Find Full Text PDF

Background: The association between cardiovascular disease and carcinogenesis is bidirectional and well-established. Furthermore, cancer treatment improves overall patient survival, potentially at the cost of incremental and fatal cardiovascular disease (CVD).

Aim: To evaluate (a) In a real-world cohort, the proportion of patients offered cancer chemotherapy who have antecedent CVD (CVD); (b) The rates of patient admission with subsequent development of CVD (CVD) requiring hospital admission post assignment to chemotherapy; (c) The impact of CVD and CVD on mortality rates relative to those seen in patients without overt CVD (CVD) and (d) The time course of mortality in CVD versus CVD patients.

View Article and Find Full Text PDF
Article Synopsis
  • Metabolic diseases like obesity and type 2 diabetes involve insulin resistance, particularly in neurons of the arcuate nucleus of the hypothalamus that help regulate metabolism.
  • The study highlights how the perineuronal net, an extracellular matrix that surrounds these neurons, becomes altered during metabolic diseases, contributing to insulin resistance.
  • Disrupting this protective net in obese mice improves brain insulin access, reverses insulin resistance in neurons, and boosts metabolic health, revealing extracellular matrix changes as critical to understanding metabolic diseases.
View Article and Find Full Text PDF
Article Synopsis
  • Reduced responsiveness to chemotherapy in precursor B-acute lymphoblastic leukemia (BCP-ALL) can be identified by the presence of minimal residual disease cells after 28 days of treatment, which is influenced by the supportive bone marrow microenvironment.
  • The study found that these drug-tolerant cells showed significant changes in their glycocalyx, including shifts in glycan structures and reduced sialylation, indicating how their surface proteins might adapt to survive chemotherapy.
  • Specific proteins, such as HLA-DRA and CD38, were identified as having differential glycosylation patterns, suggesting that these changes in glycosylation could be potential targets for developing new treatments against drug-resistant leukemia.
View Article and Find Full Text PDF