Publications by authors named "N H Al-Humadi"

Vaccines are considered to be one of the most cost-effective life-saving interventions in human history. The body's inflammatory response to vaccines has both desired effects (immune response), undesired effects [(acute phase reactions (APRs)] and trade-offs. Trade-offs are more potent immune responses which may be potentially difficult to separate from potent acute phase reactions.

View Article and Find Full Text PDF

Vaccine development requires pre-clinical toxicology studies, following good laboratory practice (GLP), before first in human (phase I) use. Many factors are critical in the final outcome of any pre-clinical toxicology study. The study design is one of these critical factors and should be carefully planned to avoid any false negative and/or false positive results.

View Article and Find Full Text PDF

Studies have shown that silica induces apoptosis through mechanisms that also regulate the inflammatory responses of lung cells to silica exposure. Although implicated in cell culture studies, the major in vivo pathway through which silica induces apoptosis has not been characterized. The present study is to study the role of mitochondria in silica-induced oxidative stress and apoptosis in vivo.

View Article and Find Full Text PDF

Dose-dependent specific antibody production, antigen-dependent pulmonary inflammation, and thiol changes in the lung and associated lymph nodes were examined in a Brown Norway rat model of pulmonary sensitization. Cysteine (CYSH), glutathione (GSH), and markers of inflammation in bronchoalveolar lavage fluid (BALF) were measured following ovalbumin (OVA) inhalation challenge. Alveolar macrophages (AM) and pulmonary-associated lymph node cells (LNC) were isolated and intracellular CYSH and GSH assessed.

View Article and Find Full Text PDF

The effect of diesel exhaust particulate (DEP) exposure on innate, cellular and humoral pulmonary immunity was studied using high-dose, acute-exposure rat, mouse, and cell culture models. DEP consists of a complex mixture of petrochemical-derived organics adsorbed onto elemental carbon particles. DEP is a major component of particulate urban air pollution and a health concern in both urban and occupational environments.

View Article and Find Full Text PDF