Unlocking the potential of broadly reactive coronavirus monoclonal antibodies (mAbs) and their derivatives offers a transformative therapeutic avenue against severe COVID-19, especially crucial for safeguarding high-risk populations. Novel mAb-based immunotherapies may help address the reduced efficacy of current vaccines and neutralizing mAbs caused by the emergence of variants of concern (VOCs). Using phage display technology, we discovered a pan-SARS-CoV-2 mAb (C10) that targets a conserved region within the receptor-binding domain (RBD) of the virus.
View Article and Find Full Text PDFWe developed the LabVIEW-based virtual instruments (VIs) to bridge a gap in commercial software and to enable systematic peak-overlapping studies to recognise the concentration levels enabling reliable simultaneous determination of major and minor constituents in samples with wide concentration proportions. The VIs were applied to a case study of the ion chromatographic determination of potassium as minor and sodium as a major ion with an IonPac CS12A column and 50 μL injection loop. Two successive studies based on multilevel two-factorial response surface experimental designs, (1) a model peak-overlapping study based on single-ion injections, and (2) an accuracy and precision study, provided guidelines for real sample analyses.
View Article and Find Full Text PDFWe previously enabled a direct insight into the quality of citrate anticoagulant tubes before their intended use for specimen collection by introducing an easy-to-perform UV spectrometric method for citrate determination on a purified water model. The results revealed differences between the tubes of three producers, Greiner BIO-ONE (A), LT Burnik (B), and BD (C). It became apparent that tubes C contain an additive, which absorbs light in the ultraviolet range and prevents reliable evaluation of citrate anticoagulant concentration with the suggested method.
View Article and Find Full Text PDFFlaviviruses have emerged as major arthropod-transmitted pathogens and represent an increasing public health problem worldwide. High-throughput screening can be facilitated using viruses that easily express detectable marker proteins. Therefore, developing molecular tools, such as reporter-carrying versions of flaviviruses, for studying viral replication and screening antiviral compounds represents a top priority.
View Article and Find Full Text PDFAirway-liquid interface cultures of primary epithelial cells and of induced pluripotent stem-cell-derived airway epithelial cells (ALI and iALI, respectively) are physiologically relevant models for respiratory virus infection studies because they can mimic the in vivo human bronchial epithelium. Here, we investigated gene expression profiles in human airway cultures (ALI and iALI models), infected or not with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), using our own and publicly available bulk and single-cell transcriptome datasets. SARS-CoV-2 infection significantly increased the expression of interferon-stimulated genes (, , , , , , , and ) and inflammatory genes (, , , and ) by day 4 post-infection, indicating activation of the interferon and immune responses to the virus.
View Article and Find Full Text PDF