Publications by authors named "N Gopalswamy"

The dosimeter Liulin-MO for measuring the radiation environment onboard the ExoMars Trace Gas Orbiter (TGO) is a module of the Fine Resolution Epithermal Neutron Detector (FREND). Here we present results from measurements of the charged particle fluxes, dose rates and estimation of dose equivalent rates at ExoMars TGO Mars science orbit, provided by Liulin-MO from May 2018 to June 2022. The period of measurements covers the declining and minimum phases of the solar activity in 24th solar cycle and the rising phase of the 25th cycle.

View Article and Find Full Text PDF

This review article summarizes the advancement in the studies of Earth-affecting solar transients in the last decade that encompasses most of solar cycle 24. It is a part of the effort of the International Study of Earth-affecting Solar Transients (ISEST) project, sponsored by the SCOSTEP/VarSITI program (2014-2018). The Sun-Earth is an integrated physical system in which the space environment of the Earth sustains continuous influence from mass, magnetic field, and radiation energy output of the Sun in varying timescales from minutes to millennium.

View Article and Find Full Text PDF

We report on the source of protons during the SOL2014-09-01 sustained gamma-ray emission (SGRE) event based on multi-wavelength data from a wide array of space- and ground-based instruments. Based on the eruption geometry we provide concrete explanation for the spatially and temporally extended -ray emission from the eruption. We show that the associated flux rope is of low inclination (roughly oriented in the east-west direction), which enables the associated shock to extend to the frontside.

View Article and Find Full Text PDF

We use microwave imaging observations from the Nobeyama Radioheliograph at 17 GHz for long-term studies of solar activity. In particular, we use the polar and low-latitude brightness temperatures as proxies to the polar magnetic field and the active-regions, respectively. We also use the location of prominence eruptions as a proxy to the filament locations as a function of time.

View Article and Find Full Text PDF

Between 13 and 16 February 2011, a series of coronal mass ejections (CMEs) erupted from multiple polarity inversion lines within active region 11158. For seven of these CMEs we employ the graduated cylindrical shell (GCS) flux rope model to determine the CME trajectory using both (STEREO) extreme ultraviolet (EUV) and coronagraph images. We then use the model called Forecasting a CME's Altered Trajectory (ForeCAT) for nonradial CME dynamics driven by magnetic forces to simulate the deflection and rotation of the seven CMEs.

View Article and Find Full Text PDF