Publications by authors named "N Goldenfeld"

How predictable are turbulent flows? Here, we use theoretical estimates and shell model simulations to argue that Eulerian spontaneous stochasticity, a manifestation of the nonuniqueness of the solutions to the Euler equation that is conjectured to occur in Navier-Stokes turbulence at high Reynolds numbers, leads to universal statistics at finite times, not just at infinite time as for standard chaos. These universal statistics are predictable, even though individual flow realizations are not. Any small-scale noise vanishing slowly enough with increasing Reynolds number can trigger spontaneous stochasticity, and here we show that thermal noise alone, in the absence of any larger disturbances, would suffice.

View Article and Find Full Text PDF

The transition to turbulence in wall-bounded shear flows is typically subcritical, with a poorly understood interplay between spatial fluctuations, pattern formation, and stochasticity near the critical Reynolds number. Here, we present a spatially extended stochastic minimal model for the energy budget in transitional pipe flow, which successfully recapitulates the way localized patches of turbulence (puffs) decay, split, and grow, respectively, as the Reynolds number increases through the laminar-turbulent transition. Our approach takes into account the flow geometry, as we demonstrate by extending the model to quasi-one-dimensional Taylor-Couette flow, reproducing the observed directed percolation pattern of turbulent patches in space and time.

View Article and Find Full Text PDF

We revisit the issue of whether thermal fluctuations are relevant for incompressible fluid turbulence and estimate the scale at which they become important. As anticipated by Betchov in a prescient series of works more than six decades ago, this scale is about equal to the Kolmogorov length, even though that is several orders of magnitude above the mean free path. This result implies that the deterministic version of the incompressible Navier-Stokes equation is inadequate to describe the dissipation range of turbulence in molecular fluids.

View Article and Find Full Text PDF

In Fall 2020, universities saw extensive transmission of SARS-CoV-2 among their populations, threatening health of the university and surrounding communities, and viability of in-person instruction. Here we report a case study at the University of Illinois at Urbana-Champaign, where a multimodal "SHIELD: Target, Test, and Tell" program, with other non-pharmaceutical interventions, was employed to keep classrooms and laboratories open. The program included epidemiological modeling and surveillance, fast/frequent testing using a novel low-cost and scalable saliva-based RT-qPCR assay for SARS-CoV-2 that bypasses RNA extraction, called covidSHIELD, and digital tools for communication and compliance.

View Article and Find Full Text PDF

Adverse social experience affects social structure by modifying the behavior of individuals, but the relationship between an individual's behavioral state and its response to adversity is poorly understood. We leveraged naturally occurring division of labor in honey bees and studied the biological embedding of environmental threat using laboratory assays and automated behavioral tracking of whole colonies. Guard bees showed low intrinsic levels of sociability compared with foragers and nurse bees, but large increases in sociability following exposure to a threat.

View Article and Find Full Text PDF