Publications by authors named "N Ghofraniha"

Multi-responsive nanomaterials based on the self-limited assembly of plasmonic nanoparticles are of great interest due to their widespread employment in sensing applications. We present a thorough investigation of a hybrid nanomaterial based on the protein-mediated aggregation of gold nanoparticles at varying protein concentration, pH and temperature. By combining Small Angle X-ray Scattering with extinction spectroscopy, we are able to frame the morphological features of the formed fractal aggregates in a theoretical model based on patchy interactions.

View Article and Find Full Text PDF

Microscopic lasers represent a promising tool for the development of cutting-edge photonic devices thanks to their ability to enhance light-matter interaction at the microscale. In this work, we realize liquid microlasers with tunable emission by exploiting the self-formation of three-dimensional liquid droplets into a polymeric matrix driven by viscoelastic dewetting. We design a flexible device to be used as a smart photonic label which is detachable and reusable on various types of substrates such as paper or fabric.

View Article and Find Full Text PDF

Spin-glass theory is one of the leading paradigms of complex physics and describes condensed matter, neural networks and biological systems, ultracold atoms, random photonics and many other research fields. According to this theory, identical systems under identical conditions may reach different states. This effect is known as replica symmetry breaking and is revealed by the shape of the probability distribution function of an order parameter named the Parisi overlap.

View Article and Find Full Text PDF

Silica aerogels are materials well suited for high power nonlinear optical applications. In such regime, the non-trivial thermal properties may give rise to the generation of optical shock waves, which are also affected by the structural disorder due to the porous solid-state gel. Here we report on an experimental investigation in terms of beam waist and input power, and identify various regimes of the generation of wave-breaking phenomena in silica aerogels.

View Article and Find Full Text PDF