Background: Brain-computer interface methodology based on self-regulation of slow-cortical potentials (SCPs) of the EEG (electroencephalogram) was used to assess conditional associative learning in one severely paralyzed, late-stage ALS patient. After having been taught arbitrary stimulus relations, he was evaluated for formation of equivalence classes among the trained stimuli.
Methods: A monitor presented visual information in two targets.
Objective: Brain-computer interface methodology based on self-regulation of slow-cortical potentials (SCPs) of the EEG was used to assess cognitive abilities of two late-stage ALS patients.
Methods: A monitor presented visual information in two targets. Patients used their SCPs to steer a cursor to one of the targets.
Objectives: Severely paralyzed patients could learn to voluntarily generate slow cortical potential (SCP) shifts in their electroencephalogram and to use these signals to operate a communication device. To enhance the patients' autonomy, the present study describes the development of a permanently available communication system that can be turned on and off by locked-in patients without external assistance. A skill necessary for turning the system on is the ability to regulate one's slow potentials in the absence of continuous feedback.
View Article and Find Full Text PDFIEEE Trans Rehabil Eng
June 2000
The thought translation device trains locked-in patients to self-regulate slow cortical potentials (SCP's) of their electroencephalogram (EEG). After operant learning of SCP self-control, patients select letters, words or pictograms in a computerized language support program. Results of five respirated, locked-in-patients are described, demonstrating the usefulness of the thought translation device as an alternative communication channel in motivated totally paralyzed patients with amyotrophic lateral sclerosis.
View Article and Find Full Text PDF