Additively manufactured drug products, typically produced using small-scale, on-demand batch mode, require rapid and non-destructive quantification methods. A tunable modular design (TMD) approach combining porous polymeric freeze-dried modules and an additive manufacturing method, inkjet printing, was proposed in an earlier study to fabricate accurate and patient-tailored doses of an antidepressant citalopram hydrobromide. This approach addresses the unmet medical needs associated with antidepressant tapering.
View Article and Find Full Text PDFSemisolid extrusion (SSE) 3D printing (3DP) technology is emerging due to its simplicity and potential for on-site manufacturing of personalized drug products with tailored functionality (dose, release profile), as well as recognizability (size, shape, color). However, even a minor change in the composition of the ink (the feedstock material) and the printing process parameters can largely influence the outcome of printing. This paper summarizes the recent SSE 3DP studies, where the important factors affecting the quality of the printed drug products are discussed.
View Article and Find Full Text PDFAn abrupt cessation of antidepressant medication can be challenging due to the appearance of withdrawal symptoms. A slow hyperbolic tapering of an antidepressant, such as citalopram hydrobromide (CHB), can mitigate the withdrawal syndrome. However, there are no viable dosage forms on the market to implement the tapering scheme.
View Article and Find Full Text PDFBasic Clin Pharmacol Toxicol
March 2024
Current treatment strategies are moving towards patient-centricity, which emphasizes the need for new solutions allowing for medication tailored to a patient. This can be realized by precision medicine where patient diversity is considered during treatment. However, the broader use of precision medicine is restricted by the current technological solutions and rigid manufacturing of pharmaceutical products by mass production principles.
View Article and Find Full Text PDFThis study investigates the influence of drug load and polymer molecular weight on the structure of tablets three-dimensionally (3D) printed from the binary mixture of prednisolone and hydroxypropyl methylcellulose (HPMC). Three different HPMC grades, (AFFINISOL HPMC HME 15LV, 90 Da (HPMC 15LV); 100LV, 180 Da (HPMC 100LV); 4M, 500 Da (HPMC 4M)), which are suitable for hot-melt extrusion (HME), were used in this study. HME was used to fabricate feedstock material, i.
View Article and Find Full Text PDF