Publications by authors named "N Gedik"

Article Synopsis
  • Impaired calcium (Ca) handling in heart cells is a key feature of heart failure (HF), leading to issues like weakened heart contractions and irregular heartbeats.
  • The study used transgenic mice with a mutation affecting a calcium regulator (phospholamban) to understand how defects in calcium cycling contribute to HF, noting that these mice experience severe and fast-progressing heart failure.
  • Early treatment aimed at correcting calcium cycling using Raf kinase inhibitor protein (RKIP) was found to delay heart cell damage and improve overall health of the mice, indicating that addressing Ca dynamics early on could be crucial for preventing further complications in heart failure.
View Article and Find Full Text PDF

Ultrafast photoexcitation offers a novel approach to manipulating quantum materials. One of the long-standing goals in this field is to achieve optical control over topological properties. However, the impact on their electronic structures, which host gapless surface states, has yet to be directly observed.

View Article and Find Full Text PDF

Controlling the functional properties of quantum materials with light has emerged as a frontier of condensed-matter physics, leading to the discovery of various light-induced phases of matter, such as superconductivity, ferroelectricity, magnetism and charge density waves. However, in most cases, the photoinduced phases return to equilibrium on ultrafast timescales after the light is turned off, limiting their practical applications. Here we use intense terahertz pulses to induce a metastable magnetization with a remarkably long lifetime of more than 2.

View Article and Find Full Text PDF

Utilizing ultrafast light-matter interaction to manipulate electronic states of quantum materials is an emerging area of research in condensed matter physics. It has significant implications for the development of future ultrafast electronic devices. However, the ability to induce long-lasting metastable electronic states in a fully reversible manner is a long-standing challenge.

View Article and Find Full Text PDF