Publications by authors named "N Garcia-Urkia"

Extracellular matrix hydrogels are considered one of the most suitable biomaterials for tissue regeneration due to their similarity with the extracellular microenvironment of the native tissue. Their properties are dependent on their composition, material concentration, fiber density and the fabrication approaches, among other factors. The encapsulation of immune cells in this kind of hydrogels, both in absence or presence of a pathogen, represents a promising strategy for the development of platforms that mimic healthy and infected tissues, respectively.

View Article and Find Full Text PDF

Engineered 3D human adipose tissue models and the development of physiological human 3D in vitro models to test new therapeutic compounds and advance in the study of pathophysiological mechanisms of disease is still technically challenging and expensive. To reduce costs and develop new technologies to study human adipogenesis and stem cell differentiation in a controlled in vitro system, here we report the design, characterization, and validation of extracellular matrix (ECM)-based materials of decellularized human adipose tissue (hDAT) or bovine collagen-I (bCOL-I) for 3D adipogenic stem cell culture. We aimed at recapitulating the dynamics, composition, and structure of the native ECM to optimize the adipogenic differentiation of human mesenchymal stem cells.

View Article and Find Full Text PDF

3D cell culture systems based on biological scaffold materials obtainable from both animal and human tissues constitute very interesting tools for cell therapy and personalised medicine applications. The white adipose tissue (AT) extracellular matrix (ECM) is a very promising biomaterial for tissue engineering due to its easy accessibility, malleability and proven biological activity. In the present study, human dental pulp stem cells (hDPSCs) were combined in vitro with ECM scaffolds from porcine and human decellularised adipose tissues (pDAT, hDAT) processed as 3D solid foams, to investigate their effects on the osteogenic differentiation capacity and bone matrix production of hDPSCs, compared to single-protein-based 3D solid foams of collagen type I and conventional 2D tissue-culture-treated polystyrene plates.

View Article and Find Full Text PDF

Macrophages, cells effective in sensing, internalizing and killing , are intertwined with the extracellular matrix (ECM) through different signals, which include the release of specific cytokines. Due to the importance of these interactions, the employment of in vitro models mimicking a fungal infection scenario is essential to evaluate the ECM effects on the macrophage response. In this work, we have analyzed the effects of human and porcine decellularized adipose matrices (DAMs), obtained by either enzymatic or organic solvent treatment, on the macrophage/ interface.

View Article and Find Full Text PDF

The decellularized extracellular matrix (ECM) obtained from human and porcine adipose tissue (AT) is currently used to prepare regenerative medicine bio-scaffolds. However, the influence of these natural biomaterials on host immune response is not yet deeply understood. Since macrophages play a key role in the inflammation/healing processes due to their high functional plasticity between M1 and M2 phenotypes, the evaluation of their response to decellularized ECM is mandatory.

View Article and Find Full Text PDF