Publications by authors named "N Garau"

The generation of synthetic CT for carbon ion radiotherapy (CIRT) applications is challenging, since high accuracy is required in treatment planning and delivery, especially in an anatomical site as complex as the abdomen. Thirty-nine abdominal MRI-CT volume pairs were collected and a three-channel cGAN (accounting for air, bones, soft tissues) was used to generate sCTs. The network was tested on five held-out MRI volumes for two scenarios: (i) a CT-based segmentation of the MRI channels, to assess the quality of sCTs and (ii) an MRI manual segmentation, to simulate an MRI-only treatment scenario.

View Article and Find Full Text PDF

Integrating the information coming from biological samples with digital data, such as medical images, has gained prominence with the advent of precision medicine. Research in this field faces an ever-increasing amount of data to manage and, as a consequence, the need to structure these data in a functional and standardized fashion to promote and facilitate cooperation among institutions. Inspired by the Minimum Information About BIobank data Sharing (MIABIS), we propose an extended data model which aims to standardize data collections where both biological and digital samples are involved.

View Article and Find Full Text PDF

Purpose: With the future goal of defining a large dataset based on low-dose CT with labelled pulmonary lesions for lung cancer screening (LCS) research, the aim of this work is to propose and evaluate into a clinical context a tool for semi-automatic segmentation able to facilitate the process of labels collection from a LCS study (COSMOS, Continuous Observation of SMOking Subjects).

Methods: Considering a preliminary set of manual annotations, a segmentation model based on a 2D-Unet was trained from scratch. Contour quality of the final 2D-Unet was assessed on an internal test set of manual annotations and on a subset of the public available LIDC dataset used as external test set.

View Article and Find Full Text PDF

Radiomics uses high-dimensional sets of imaging features to predict biological characteristics of tumors and clinical outcomes. The choice of the algorithm used to analyze radiomic features and perform predictions has a high impact on the results, thus the identification of adequate machine learning methods for radiomic applications is crucial. In this study we aim to identify suitable approaches of analysis for radiomic-based binary predictions, according to sample size, outcome balancing and the features-outcome association strength.

View Article and Find Full Text PDF

Purpose: Low-dose CT screening allows early lung cancer detection, but is affected by frequent false positive results, inter/intra observer variation and uncertain diagnoses of lung nodules. Radiomics-based models have recently been introduced to overcome these issues, but limitations in demonstrating their generalizability on independent datasets are slowing their introduction to clinic. The aim of this study is to evaluate two radiomics-based models to classify malignant pulmonary nodules in low-dose CT screening, and to externally validate them on an independent cohort.

View Article and Find Full Text PDF