Metabolically active cells emit volatile organic compounds (VOCs) that can be used in real time to non-invasively monitor the health of cell cultures. We utilized these naturally occurring VOCs in an adapted culture method to detect differences in culturing Chinese hamster ovary (CHO) cells with and without Staphylococcus epidermidis and Aspergillus fumigatus contaminations. The VOC emissions from the cell cultures were extracted and measured from the culture flask headspace using polydimethylsiloxane (PDMS)-coated Twisters, which were subjected to thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) analysis.
View Article and Find Full Text PDFImportance: Asthma is a chronic respiratory disease affecting approximately 5 million children in the US. Rodent models of asthma indicate memory deficits, but little is known about whether asthma alters children's memory development.
Objective: To assess whether childhood asthma is associated with lower memory abilities in children.
Volatile organic compounds (VOCs) produced by the lung in response to exposure to environmental pollutants can be utilized to study their impact on lung health and function. Previously, we developed a method to measure VOCs emitted from well-differentiated tracheobronchial epithelial cells in vitro. Using this method, we exposed well-differentiated proximal (PECs) and distal airway epithelial cells (DECs) to varying doses of traffic-related air pollutants (TRAP) and wildfire particulates to determine specific VOC signatures after exposure.
View Article and Find Full Text PDFType 1 diabetes mellitus (T1DM) is a growing global health concern that affects approximately 8.5 million individuals worldwide. T1DM is characterized by an autoimmune destruction of pancreatic β cells, leading to a disruption in glucose homeostasis.
View Article and Find Full Text PDFBackground: MARCKS (myristoylated alanine-rich C kinase substrates) serves as a substrate for protein kinase C, residing in the plasma membrane while acts as an actin filament crosslinking protein. This investigation aims to elucidate phosphorylated MARCKS (p-MARCKS) levels and activity in allergic asthma patients and explore the therapeutic potential of peptide inhibitors targeting p-MARCKS in an acute mouse model of allergic asthma.
Methods: Immunohistochemistry and histology staining were employed on lung tissue slides to evaluate p-MARCKS expression and allergic asthma symptoms.