Publications by authors named "N G Henriksson"

Although the separate effects of water and nitrogen (N) limitations on forest growth are well known, the question of how to predict their combined effects remains a challenge for modeling of climate change impacts on forests. Here, we address this challenge by developing a new eco-physiological model that accounts for plasticity in stomatal conductance and leaf N concentration. Based on optimality principle, our model determines stomatal conductance and leaf N concentration by balancing carbon uptake maximization, hydraulic risk and cost of maintaining photosynthetic capacity.

View Article and Find Full Text PDF

Multilayered metal-dielectric nanostructures display both a strong plasmonic behavior and hyperbolic optical dispersion. The latter is responsible for the appearance of two separated radiative and nonradiative channels in the extinction spectrum of these structures. This unique property can open plenty of opportunities toward the development of multifunctional systems that simultaneously can behave as optimal scatterers and absorbers at different wavelengths, an important feature to achieve multiscale control of light-matter interactions in different spectral regions for different types of applications, such as optical computing or detection of thermal radiation.

View Article and Find Full Text PDF

Isotopic pulse-labelling of photosynthate allows tracing of carbon (C) from tree canopies to below-ground biota and calculations of its turnover in roots and recipient soil microorganisms. A high concentration of label is desirable but is difficult to achieve in field studies of intact ecosystem patches with trees. Moreover, root systems of trees overlap considerably in most forests, which requires a large labelled area to minimize the impact of C allocated below-ground by un-labelled trees.

View Article and Find Full Text PDF
Article Synopsis
  • Most forest carbon measurements overlook the carbon loss from dead branches, which is an important part of tree physiology.
  • Analyzing data from over 184,000 trees across various forests revealed that considering branch turnover can raise aboveground wood production estimates by 16%, affecting global carbon sink calculations.
  • To improve carbon estimates, researchers suggest changing field measurement methods and models to properly account for branch turnover, as current methods significantly underestimate carbon loss.
View Article and Find Full Text PDF

There are growing doubts about the true role of the common mycorrhizal networks (CMN or wood wide web) connecting the roots of trees in forests. We question the claims of a substantial carbon transfer from 'mother trees' to their offspring and nearby seedlings through the CMN. Recent reviews show that evidence for the 'mother tree concept' is inconclusive or absent.

View Article and Find Full Text PDF