Surrogate measures of glomerular filtration rate (GFR) continue to serve as pivotal determinants of the incidence, severity, and management of acute kidney injury (AKI), as well as the primary reference point underpinning knowledge of its pathophysiology. However, several clinically important deficits in aspects of renal excretory function during AKI other than GFR decline, including acid-base regulation, electrolyte and water balance, and urinary concentrating capacity, can evade detection when diagnostic criteria are built around purely GFR-based assessments. The use of putative markers of tubular injury to detect "sub-clinical" AKI has been proposed to expand the definition and diagnostic criteria for AKI, but their diagnostic performance is curtailed by ambiguity with respect to their biological meaning and context specificity.
View Article and Find Full Text PDFBackground: Diagnosis and staging of diabetic kidney disease (DKD) via the serial assessment of routine laboratory indices lacks the granularity required to resolve the heterogeneous disease mechanisms driving progression in the individual patient. A systems nephrology approach may help resolve mechanisms underlying this clinically apparent heterogeneity, paving a way for targeted treatment of DKD.
Summary: Given the limited access to kidney tissue in routine clinical care of patients with DKD, data derived from renal tissue in preclinical model systems, including animal and in vitro models, can play a central role in the development of a targeted systems-based approach to DKD.
Aims: Patients with haemochromatosis (HFE) are known to have an increased risk of developing hepatocellular carcinoma (HCC). Available data are conflicting on whether such patients have poorer prognosis, and there is lack of data regarding the biology of HFE-HCC. We compared the course of HFE-HCC with a matched non-HFE-HCC control group and examined tumour characteristics using immunohistochemistry.
View Article and Find Full Text PDFDisruptions to circadian rhythm may be implicated in the pathogenesis of metabolic syndrome (Met-S). For example, eating during an extended period of the day may negatively impact the circadian rhythms governing metabolic control, contributing, therefore, to Met-S and associated end-organ damage. Accordingly, time-restricted eating (TRE)/feeding (TRF) is gaining popularity as a dietary intervention for the treatment and prevention of Met-S.
View Article and Find Full Text PDF