In unconventional superconductors, coupled charge and lattice degrees of freedom can manifest in ordered phases of matter that are intertwined. In the cuprate family, fluctuating short-range charge correlations can coalesce into a longer-range charge density wave (CDW) order which is thought to intertwine with superconductivity, yet the nature of the interaction is still poorly understood. Here, by measuring subtle lattice fluctuations in underdoped YBaCuO on quasi-static timescales (thousands of seconds) through X-ray photon correlation spectroscopy, we report sensitivity to both superconductivity and CDW.
View Article and Find Full Text PDFUnderstanding the interplay between charge, nematic, and structural ordering tendencies in cuprate superconductors is critical to unraveling their complex phase diagram. Using pump-probe time-resolved resonant X-ray scattering on the (0 0 1) Bragg peak at the Cu [Formula: see text] and O [Formula: see text] resonances, we investigate nonequilibrium dynamics of [Formula: see text] nematic order and its association with both charge density wave (CDW) order and lattice dynamics in La[Formula: see text]Eu[Formula: see text]Sr[Formula: see text]CuO[Formula: see text]. The orbital selectivity of the resonant X-ray scattering cross-section allows nematicity dynamics associated with the planar O 2[Formula: see text] and Cu 3[Formula: see text] states to be distinguished from the response of anisotropic lattice distortions.
View Article and Find Full Text PDFX-ray photon fluctuation spectroscopy using a two-pulse mode at the Linac Coherent Light Source has great potential for the study of quantum fluctuations in materials as it allows for exploration of low-energy physics. However, the complexity of the data analysis and interpretation still prevent recovering real-time results during an experiment, and can even complicate post-analysis processes. This is particularly true for high-spatial resolution applications using CCDs with small pixels, which can decrease the photon mapping accuracy resulting from the large electron cloud generation at the detector.
View Article and Find Full Text PDF