Anaerobic digestion of agricultural waste can contribute to the European renewable energy needs. The 71% of the 20,000 anaerobic digestion plants in operation already uses these agro-waste as feedstock; part of these plants can be converted into two stage processes to produce hydrogen and methane in the same plant. Biomethane enriched in hydrogen can replace natural gas in grids while contributing to the sector decarbonisation.
View Article and Find Full Text PDFThe use of petroleum-based plastic has led to its accumulation in the environment, with negative impacts on the ecosystem and the biota. Polyhydroxyalkanoates (PHAs), biobased and biodegradable plastics produced by microbes, have many commercial applications, however their high production cost means they cannot yet compete with traditional plastics. At the same time, the problem of the growing human population implies that improved crop production is needed to avoid malnutrition.
View Article and Find Full Text PDFPolyhydroxyalkanoate (PHA) production has been the focus of considerable research to increase productivities and reduce production costs. In this study, a fermented confectionary industry wastewater was used as feedstock for mixed microbial culture PHA production. The feedstock was dominated by lactate and ethanol (60-90 % of all soluble fermentation products).
View Article and Find Full Text PDFThauera is one of the main genera involved in polyhydroxyalkanoate (PHA) production in microbial mixed cultures (MMCs) from volatile fatty acids (VFAs). However, no Thauera strains involved in PHA accumulation have been obtained in pure culture so far. This study is the first report of the isolation and characterization of a Thauera sp.
View Article and Find Full Text PDFOne of the most recent innovations to promote a circular economy during wastewater treatment is the production of biopolymers. It has recently been demonstrated that it is possible to integrate the production of biopolymers in the form of polyhydroxyalkanoates (PHA) with nitrogen removal via nitrite during the treatment of sludge reject water. In the present study, simulation of a new process for bioresource recovery was conducted by an appropriate modification of the Activated Sludge Model 3.
View Article and Find Full Text PDF