Treadmill walking is considered a useful therapeutic tool for improving gait in Parkinson's disease (PD) patients. The study investigated the role of top-down, frontal-parietal versus bottom-up parietal-frontal networks, during over-ground and treadmill walking in PD and control subjects, using functional connectivity. To this end, EEG was recorded simultaneously, during a ten-minute period of continuous walking either over-ground or on a treadmill, in thirteen PD patients and thirteen age-matched controls.
View Article and Find Full Text PDFAnodal transcranial direct current stimulation (tDCS) can enhance the retention of a previously practiced motor skill. However, the effects of tDCS on the performance of the choice reaction time task are not fully understood. We examined the effects of anodal tDCS over the left primary motor cortex (M1) on the retention of a 4-choice visual-motor reaction time task (4-ChRT).
View Article and Find Full Text PDFObjectives: The study investigated the role of top-down versus bottom-up connectivity, during the processing of predictive information, in three different psychiatric disorders.
Methods: Electroencephalography (EEG) was recorded during the performance of a task, which evaluates the ability to use predictive information in order to facilitate predictable versus random target detection. We evaluated EEG event-related directed connectivity, in patients with schizophrenia (SZ), major depressive disorder (MDD), and autism spectrum disorder (ASD), compared with healthy age-matched controls.
The study investigated the role of top-down versus bottom-up connectivity, during the processing of implicit or explicit predictive information, in Parkinson's disease (PD). EEG was recorded during the performance of a task, which evaluated the ability to utilize either implicit or explicit predictive contextual information in order to facilitate the detection of predictable versus random targets. Thus, subjects performed an implicit and explicit session, where subjects were either unaware or made aware of a predictive sequence that signals the presentation of a subsequent target, respectively.
View Article and Find Full Text PDFTranscranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that may improve motor learning. However, the long-term effects of tDCS have not been explored, and the ecological validity of the evaluated tasks was limited. To determine whether 20 sessions of tDCS over the primary motor cortex (M1) would enhance the performance of a complex life motor skill, i.
View Article and Find Full Text PDF