The recipients of NIH's Clinical and Translational Science Awards (CTSA) have worked for over a decade to build informatics infrastructure in support of clinical and translational research. This infrastructure has proved invaluable for supporting responses to the current COVID-19 pandemic through direct patient care, clinical decision support, training researchers and practitioners, as well as public health surveillance and clinical research to levels that could not have been accomplished without the years of ground-laying work by the CTSAs. In this paper, we provide a perspective on our COVID-19 work and present relevant results of a survey of CTSA sites to broaden our understanding of the key features of their informatics programs, the informatics-related challenges they have experienced under COVID-19, and some of the innovations and solutions they developed in response to the pandemic.
View Article and Find Full Text PDFMicrogravity-induced alterations in the autonomic nervous system (ANS) contribute to derangements in both the mechanical and electrophysiological function of the cardiovascular system, leading to severe symptoms in humans following space travel. Because the ANS forms embryonically from neural crest (NC) progenitors, we hypothesized that microgravity can impair NC-derived cardiac structures. Accordingly, we conducted in vitro simulated microgravity experiments employing NC genetic lineage tracing in mice with cKit, Isl1nLacZ, and Wnt1-Cre reporter alleles.
View Article and Find Full Text PDFWe studied the transcriptome landscape of skin cutaneous melanoma (SKCM) using 103 primary tumor samples from TCGA, and measured the expression levels of both protein coding genes and non-coding RNAs (ncRNAs). In particular, we emphasized pseudogenes potentially relevant to this cancer. While cataloguing the profiles based on the known biotypes, all the employed RNA-Seq methods generated just a small consensus of significant biotypes.
View Article and Find Full Text PDFA number of chemical compounds have been shown to induce liver tumors in mice but not in other species. While several mechanisms for this species-specific tumorigenicity have been proposed, no definitive mechanism has been established. We examined the effects of the nongenotoxic rodent hepatic carcinogen, WY-14,643, in male mice from a high liver tumor susceptible strain (C3H/HeJ), and from a low tumor susceptible strain (C57BL/6).
View Article and Find Full Text PDF