Odorants binding to olfactory receptor neurons (ORNs) trigger bursts of action potentials, providing the brain with its only experience of the olfactory environment. Our recordings made in vivo from locust ORNs showed that odor-elicited firing patterns comprise four distinct response motifs, each defined by a reliable temporal profile. Different odorants could elicit different response motifs from a given ORN, a property we term motif switching.
View Article and Find Full Text PDFCommun Nonlinear Sci Numer Simul
June 2019
Reduced models of neuronal spiking activity simulated with a fixed integration time are frequently used in studies of spatio-temporal dynamics of neurobiological networks. The choice of fixed time step integration provides computational simplicity and efficiency, especially in cases dealing with large number of neurons and synapses operating at a different level of activity across the population at any given time. A network model tuned to generate a particular type of oscillations or wave patterns is sensitive to the intrinsic properties of neurons and synapses and, therefore, commonly susceptible to changes the time step of integration.
View Article and Find Full Text PDFBackground: Although they form a unitary phenomenon, the relationship between extracranial M/EEG and transmembrane ion flows is understood only as a general principle rather than as a well-articulated and quantified causal chain.
Method: We present an integrated multiscale model, consisting of a neural simulation of thalamus and cortex during stage N2 sleep and a biophysical model projecting cortical current densities to M/EEG fields. Sleep spindles were generated through the interactions of local and distant network connections and intrinsic currents within thalamocortical circuits.
During slow-wave sleep, brain electrical activity is dominated by the slow (< 1 Hz) electroencephalogram (EEG) oscillations characterized by the periodic transitions between active (or Up) and silent (or Down) states in the membrane voltage of the cortical and thalamic neurons. Sleep slow oscillation is believed to play critical role in consolidation of recent memories. Past computational studies, based on the Hodgkin-Huxley type neuronal models, revealed possible intracellular and network mechanisms of the neuronal activity during sleep, however, they failed to explore the large-scale cortical network dynamics depending on collective behavior in the large populations of neurons.
View Article and Find Full Text PDFRhythms and timing control of sequential activity in the brain is fundamental to cognition and behavior. Although experimental and theoretical studies support the understanding that neuronal circuits are intrinsically capable of generating different time intervals, the dynamical origin of the phenomenon of functionally dependent timing control is still unclear. Here, we consider a new mechanism that is related to the multi-neuronal cooperative dynamics in inhibitory brain motifs consisting of a few clusters.
View Article and Find Full Text PDF