Publications by authors named "N F Glebova"

Ensuring the stable operation of proton exchange membrane fuel cells is conducive to their real-world application. A promising direction for stabilizing electrodes is the stabilization of the ionomer via the formation of surface compounds with graphene. A comprehensive study of the (electrochemical, chemical, and thermal) stability of composites for fuel cell electrodes containing a modifying additive of few-layer graphene was carried out.

View Article and Find Full Text PDF

This paper presents a study of the platinum activity in the ORR in a hydrogen polymer electrolyte membrane fuel cell with electrodes containing multi-walled CNTs in a wide range of compositions and conditions. The data of the comparative analysis of the platinum activity on a fraction of Nafion in the electrode, the composition of the oxidizing agent (oxygen, air), pressure, and temperature are provided. The reasons for the dependence of the platinum surface activity on the component composition of the electrode are considered.

View Article and Find Full Text PDF

The stability of Nafion-carbon composites is important for the efficient functioning of fuel cells. The thermal decomposition of Nafion, nanostructured carbon materials, such as multi-walled carbon nanotubes, graphene-like materials, and their composites, have been studied using constant heating rate thermogravimetry in air. Materials were characterized by quantitative and qualitative analysis methods, such as thermogravimetry, X-ray photoelectron spectroscopy, scanning, and transmission electron microscopy with field emission.

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluates the stability of new proton-exchange membrane fuel cells (PEMFCs) with porous electrodes and low platinum loading, using Nafion as a proton conductor under electrochemical aging conditions.
  • Results were gathered through various techniques including voltammetry and electron microscopy, showing that high porosity improves mass transfer but also leads to notable differences in degradation patterns compared to traditional electrodes.
  • The findings indicate that the size increase of platinum nanoparticles is less in highly porous electrodes, whereas there is a greater loss of Nafion and an increase in ionic resistance, suggesting unique aging mechanisms for structurally modified electrodes.
View Article and Find Full Text PDF

Compositional proton-conducting membranes based on perfluorinated Aquivion-type copolymers modified by detonation nanodiamonds (DND) with positively charged surfaces were prepared to improve the performance of hydrogen fuel cells. Small-angle neutron scattering (SANS) experiments demonstrated the fine structure in such membranes filled with DND (0-5 wt.%), where the conducting channels typical for Aquivion membranes are mostly preserved while DND particles (4-5 nm in size) decorated the polymer domains on a submicron scale, according to scanning electron microscopy (SEM) data.

View Article and Find Full Text PDF