Publications by authors named "N Escriou"

In the early COVID-19 pandemic with urgent need for countermeasures, we aimed at developing a replicating viral vaccine using the highly efficacious measles vaccine as vector, a promising technology with prior clinical proof of concept. Building on our successful pre-clinical development of a measles virus (MV)-based vaccine candidate against the related SARS-CoV, we evaluated several recombinant MV expressing codon-optimized SARS-CoV-2 spike glycoprotein. Candidate V591 expressing a prefusion-stabilized spike through introduction of two proline residues in HR1 hinge loop, together with deleted S1/S2 furin cleavage site and additional inactivation of the endoplasmic reticulum retrieval signal, was the most potent in eliciting neutralizing antibodies in mice.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2, which emerged in late 2019, has caused a global pandemic, with 34 vaccines approved and about 67% of the world vaccinated, yet new infections and variants still pose challenges.
  • Researchers evaluated a new measles virus-vectored vaccine (V591) designed to target the SARS-CoV-2 spike protein in an African green monkey model, demonstrating strong immune responses pre-challenge.
  • V591-vaccinated monkeys showed reduced viral loads and earlier cessation of virus shedding after exposure to SARS-CoV-2, leading to a lower disease burden in their lungs compared to those given a control vaccine.
View Article and Find Full Text PDF

Controversial reports have suggested that SARS-CoV E and 3a proteins are plasma membrane viroporins. Here, we aimed at better characterizing the cellular responses induced by these proteins. First, we show that expression of SARS-CoV-2 E or 3a protein in CHO cells gives rise to cells with newly acquired round shapes that detach from the Petri dish.

View Article and Find Full Text PDF

Management of the COVID-19 pandemic relies on molecular diagnostic methods supported by serological tools. Herein, we developed S-RBD- and N- based ELISA assays useful for infection rate surveillance as well as the follow-up of acquired protective immunity against SARS-CoV-2. ELISA assays were optimized using COVID-19 Tunisian patients' sera and prepandemic controls.

View Article and Find Full Text PDF

Studies on the humoral response to homologous BNT162b2 mRNA-vaccination focus mainly on IgG antibody dynamics, while long-term IgA kinetics are understudied. Herein, kinetics of IgG and IgA levels against trimeric-Spike (S) and Receptor-Binding-Domain (RBD) were evaluated by in-house ELISAs in 146 two-dose vaccinated Greek healthcare workers (HCWs) in a 9-month period at six time points (up to 270 days after the first dose). The effect of a homologous booster third dose was also studied and evaluated.

View Article and Find Full Text PDF