Publications by authors named "N E Zachara"

The treatment of defective glycosylation in clinical practice has been limited to patients with rare and severe phenotypes associated with congenital disorders of glycosylation (CDG). Carried by approximately 5% of the human population, the discovery of the highly pleiotropic, missense mutation in a manganese transporter ZIP8 has exposed under-appreciated roles for Mn homeostasis and aberrant Mn-dependent glycosyltransferases activity leading to defective N-glycosylation in complex human diseases. Here, we test the hypothesis that aberrant N-glycosylation contributes to disease pathogenesis of ZIP8 A391T-associated Crohn's disease.

View Article and Find Full Text PDF

The modification of nuclear, cytoplasmic, and mitochondrial proteins by O-linked β-N-actylglucosamine (O-GlcNAc) is an essential posttranslational modification that is common in metozoans. O-GlcNAc is cycled on and off proteins in response to environmental and physiological stimuli impacting protein function, which, in turn, tunes pathways that include transcription, translation, proteostasis, signal transduction, and metabolism. One class of stimulus that induces rapid and dynamic changes to O-GlcNAc is cellular injury, resulting from environmental stress (for instance, heat shock), hypoxia/reoxygenation injury, ischemia reperfusion injury (heart attack, stroke, trauma hemorrhage), and sepsis.

View Article and Find Full Text PDF

The post-translational modification of intracellular proteins by O-linked β-GlcNAc (O-GlcNAc) has emerged as a critical regulator of cardiac function. Enhanced O-GlcNAcylation activates cytoprotective pathways in cardiac models of ischemia-reperfusion (I/R) injury; however, the mechanisms underpinning O-GlcNAc cycling in response to I/R injury have not been comprehensively assessed. The cycling of O-GlcNAc is regulated by the collective efforts of two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which catalyze the addition and hydrolysis of O-GlcNAc, respectively.

View Article and Find Full Text PDF

Background: O-GlcNAcylation is a post-translational modification catalyzed by the enzyme O-GlcNAc transferase, which transfers a single N-acetylglucosamine sugar from UDP-GlcNAc to the protein on serine and threonine residues on proteins. Another enzyme, O-GlcNAcase (OGA), removes this modification. O-GlcNAcylation plays an important role in pathophysiology.

View Article and Find Full Text PDF