Publications by authors named "N E Stankevich"

We investigate the dynamics of three identical three-dimensional ring synthetic genetic oscillators (repressilators) located in different cells and indirectly globally coupled by quorum sensing whereby it is meant that a mechanism in which special signal molecules are produced that, after the fast diffusion mixing and partial dilution in the environment, activate the expression of a target gene, which is different from the gene responsible for their production. Even at low coupling strengths, quorum sensing stimulates the formation of a stable limit cycle, known in the literature as a rotating wave (all variables have identical waveforms shifted by one third of the period), which, at higher coupling strengths, converts to complex tori. Further torus evolution is traced up to its destruction to chaos and the appearance of hyperchaos.

View Article and Find Full Text PDF

Transition to chaos via the destruction of a two-dimensional torus is studied numerically using an example of the Hénon map and the Toda oscillator under quasiperiodic forcing and also experimentally using an example of a quasi-periodically excited RL-diode circuit. A feature of chaotic dynamics in these systems is the fact that the chaotic attractor in them has an additional zero Lyapunov exponent, which strictly follows from the structure of mathematical models. In the process of research, the influence of feedback is studied, in which the frequency of one of the harmonics of external forcing becomes dependent on a dynamic variable.

View Article and Find Full Text PDF

We study the hyperchaos formation scenario in the modified Anishchenko-Astakhov generator. The scenario is connected with the existence of sequence of secondary torus bifurcations of resonant cycles preceding the hyperchaos emergence. This bifurcation cascade leads to the birth of the hierarchy of saddle-focus cycles with a two-dimensional unstable manifold as well as of saddle hyperchaotic sets resulting from the period-doubling cascades of unstable resonant cycles.

View Article and Find Full Text PDF

The generalized four-dimensional Rössler system is studied. Main bifurcation scenarios leading to a hyperchaos are described phenomenologically and their implementation in the model is demonstrated. In particular, we show that the formation of hyperchaotic invariant sets is related mainly to cascades (finite or infinite) of nondegenerate bifurcations of two types: period-doubling bifurcations of saddle cycles with a one-dimensional unstable invariant manifold and Neimark-Sacker bifurcations of stable cycles.

View Article and Find Full Text PDF