Publications by authors named "N E Scott-Samuel"

Article Synopsis
  • Motion vision is crucial for various animal behaviors, including how fiddler crabs sense predators.
  • Fiddler crabs were tested for their ability to detect second-order motion using both intensity and polarization, revealing they could respond to both types of stimuli.
  • This is the first evidence that any animal can detect second-order motion in polarization, enhancing our understanding of how polarization vision aids in target detection.
View Article and Find Full Text PDF

Iridescence is a taxonomically widespread form of structural coloration that produces often intense hues that change with the angle of viewing. Its role as a signal has been investigated in multiple species, but recently, and counter-intuitively, it has been shown that it can function as camouflage. However, the property of iridescence that reduces detectability is, as yet, unclear.

View Article and Find Full Text PDF

It has recently been found that iridescence, a taxonomically widespread form of animal coloration defined by a change in hue with viewing angle, can act as a highly effective form of camouflage. However, little is known about whether iridescence can confer a survival benefit to prey postdetection and, if so, which optical properties of iridescent prey are important for this putative protective function. Here, we tested the effects of both iridescence and surface gloss (i.

View Article and Find Full Text PDF

Avoiding detection through camouflage is often key to survival. However, an animal's appearance is not the only factor affecting conspicuousness: background complexity also alters detectability. This has been experimentally demonstrated for both artificially patterned backgrounds in the laboratory and natural backgrounds in the wild, but only for targets that already match the background well.

View Article and Find Full Text PDF

The giant panda (Ailuropoda melanoleuca) is an iconic mammal, but the function of its black-and-white coloration is mysterious. Using photographs of giant pandas taken in the wild and state-of-the-art image analysis, we confirm the counterintuitive hypothesis that their coloration provides camouflage in their natural environment. The black fur blends into dark shades and tree trunks, whereas white fur matches foliage and snow when present, and intermediate pelage tones match rocks and ground.

View Article and Find Full Text PDF