Silicon photonics is a rapidly developing technology that promises to revolutionize the way we communicate, compute and sense the world. However, the lack of highly scalable, native complementary metal-oxide-semiconductor (CMOS)-integrated light sources is one of the main factors hampering its widespread adoption. Despite considerable progress in hybrid and heterogeneous integration of III-V light sources on silicon, monolithic integration by direct epitaxy of III-V materials remains the pinnacle of cost-effective on-chip light sources.
View Article and Find Full Text PDFThe requirement for the development of advanced technologies is the need to create new functional thermostable soluble polysilsesquioxanes. Combining the potential of organosilicon chemistry and the chemistry of heterocyclic compounds is a promising direction for the formation of novel organosilicon polymer systems with new properties and new possibilities for their practical application. Using the classical method of hydrolysis and polycondensation of previously unknown trifunctional (trimethoxysilylpropyl)glutarimide in the presence or absence of an acid or base catalyst, a universal approach to the formation of new thermostable soluble polysilsesquioxanes with glutarimide side-chain groups is proposed, which forms the basis for the synthesis of polysilsesquioxane polymers with different functionality.
View Article and Find Full Text PDFThree new species of the genus Pseudachorutella, namely P. circassiana sp. nov.
View Article and Find Full Text PDFThe combined or multivalent vaccines are actively used in pediatric practice and offer a series of advantages, including a reduced number of injections and visits to the doctor, simplicity of the vaccination schedule and minimization of side effects, easier vaccine monitoring and storage, and lower vaccination costs. The practice of widespread use of the combined vaccines has shown the potential to increase vaccination coverage against single infections. The mRNA platform has been shown to be effective against the COVID-19 pandemic and enables the development of combined vaccines.
View Article and Find Full Text PDFIntroduction: For four years, SARS-CoV-2, the etiological agent of COVID-19, has been circulating among humans. By the end of the second year, an absence of immunologically naive individuals was observed, attributable to extensive immunization efforts and natural viral exposure. This study focuses on delineating the molecular and biological patterns that facilitate the persistence of SARS-CoV-2, thereby informing predictions on the epidemiological trajectory of COVID-19 toward refining pandemic countermeasures.
View Article and Find Full Text PDF