Publications by authors named "N E Geacintov"

Hypoxia is common in tumors and is associated with cancer progression and drug resistance, driven, at least in part, by genetic instability. Little is known on how hypoxia affects Translesion DNA Synthesis (TLS), in which error-prone DNA polymerases bypass lesions, thereby maintaining DNA continuity at the price of increased mutations. Here we show that under acute hypoxia, PCNA monoubiquitination, a key step in TLS, and expression of error-prone DNA polymerases increased under regulation of the HIF1α transcription factor.

View Article and Find Full Text PDF

The SARS-CoV-2 helicase, non-structural protein 13 (Nsp13), plays an essential role in viral replication, translocating in the 5' → 3' direction as it unwinds double-stranded RNA/DNA. We investigated the impact of structurally distinct DNA lesions on DNA unwinding catalyzed by Nsp13. The selected lesions include two benzo[]pyrene (B[]P)-derived dG adducts, the UV-induced cyclobutane pyrimidine dimer (CPD), and the pyrimidine (6-4) pyrimidone (6-4PP) photolesion.

View Article and Find Full Text PDF

Ultraviolet light generates cyclobutane pyrimidine dimer (CPD) and pyrimidine 6-4 pyrimidone (6-4PP) photoproducts that cause skin malignancies if not repaired by nucleotide excision repair (NER). While the faster repair of the more distorting 6-4PPs is attributed mainly to more efficient recognition by XPC, the XPD lesion verification helicase may play a role, as it directly scans the damaged DNA strand. With extensive molecular dynamics simulations of XPD-bound single-strand DNA containing each lesion outside the entry pore of XPD, we elucidate strikingly different verification processes for these two lesions that have very different topologies.

View Article and Find Full Text PDF

DNA helicase unwinding activity can be inhibited by small molecules and by covalently bound DNA lesions. Little is known about the relationships between the structural features of DNA lesions and their impact on unwinding rates and processivities. Employing RecQ helicase as a model system, and various conformationally defined DNA lesions, the unwinding rate constants = , and processivities = (k) were determined ( unwinding rate constant; , helicase-DNA dissociation rate constant).

View Article and Find Full Text PDF

As demonstrated by us earlier and by other researchers, a diet containing freeze-dried black raspberries (BRB) inhibits DNA damage and carcinogenesis in animal models. We tested the hypothesis that the inhibition of DNA damage by BRB is due, in part, to the enhancement of DNA repair capacity evaluated in the human HeLa cell extract system, an established in vitro system for the assessment of cellular DNA repair activity. The pre-treatment of intact HeLa cells with BRB extracts (BRBE) enhances the nucleotide excision repair (NER) of a bulky deoxyguanosine adduct derived from the polycyclic aromatic carcinogen benzo[a]pyrene (BP-dG) by ~24%.

View Article and Find Full Text PDF