Tissue engineering, a multidisciplinary research field aiming to revolutionize regenerative medicine, relies on scaffolds for optimal cell cultures and organ development. Decellularized tissue extracellular matrices (dECM) scaffolds, particularly from human amniotic membrane (hAM), show promise in clinical applications. This review discusses the significance of scaffolds, emphasizing dECM-based hAM scaffolds, delving into ECM complexities, decellularization processes, and evaluation methods.
View Article and Find Full Text PDFUnlabelled: Primary graft failure occurs 15 to 30 % of the time after transplantation. Although there have been improvements in preserving the lungs in good condition, there have not been studies on the regulation of transcription factors.
Methods: We carried out an experimental study involving lung transplantation to indirectly evaluate reactive oxygen species (ROS) production and VEGF expression by competitive blockade of HIF-1alpha with chetomin.
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease among adults worldwide. It is characterised by the death of dopaminergic neurons in the substantia nigra pars compacta and, in some cases, presence of intracytoplasmic inclusions of α-synuclein, called Lewy bodies, a pathognomonic sign of the disease. Clinical diagnosis of PD is based on the presence of motor alterations.
View Article and Find Full Text PDFBackground: Ex vivo lung perfusion (EVLP) constitutes a tool with great research potential due to its advantages over in vivo and in vitro models. Despite its important contribution to lung reconditioning, this technique has the disadvantage of incurring high costs and can induce pulmonary endothelial injury through perfusion and ventilation. The pulmonary endothelium is made up of endothelial glycocalyx (EG), a coating of proteoglycans (PG) on the luminal surface.
View Article and Find Full Text PDFPluripotent stem cells (PSCs; embryonic stem cells and induced pluripotent stem cells) can recapitulate critical aspects of the early stages of embryonic development; therefore, they became a powerful tool for the in vitro study of molecular mechanisms that underlie blastocyst formation, implantation, the spectrum of pluripotency and the beginning of gastrulation, among other processes. Traditionally, PSCs were studied in 2D cultures or monolayers, without considering the spatial organization of a developing embryo. However, recent research demonstrated that PSCs can form 3D structures that simulate the blastocyst and gastrula stages and other events, such as amniotic cavity formation or somitogenesis.
View Article and Find Full Text PDF