Invasive brain-machine interfaces can help restore function through the control of external devices while the addition of intracortical microstimulation (ICMS) can elicit sensations of touch and help provide further benefits for individuals living with sensorimotor deficits. However, the extent of tactile information that can be conveyed through ICMS has not been fully explored. In a human participant with spinal cord injury and chronically implanted microelectrode arrays, we used ICMS to the somatosensory cortex to provide grip force feedback in the hands during grasping of objects with varying stiffness with a robotic arm.
View Article and Find Full Text PDFThe clinical success of brain computer interfaces depends on overcoming both biological and material challenges to ensure a long-term stable connection for neural recording and stimulation. This study systematically quantified damage that microelectrodes sustained during chronical implantation in three people with tetraplegia for 956-2246 days. Using scanning electron microscopy (SEM), we imaged 980 microelectrodes from eleven Neuroport arrays tipped with platinum (Pt, n=8) and sputtered iridium oxide film (SIROF, n=3).
View Article and Find Full Text PDFBackground And Objectives: Brain-computer interfaces () hold promise as augmentative and alternative communication technology for people with severe motor and speech impairment (locked-in syndrome) due to neural disease or injury. Although such BCIs should be available 24/7, to enable communication at all times, feasibility of nocturnal BCI use has not been investigated. Here, we addressed this question using data from an individual with amyotrophic lateral sclerosis (ALS) who was implanted with an electrocorticography-based BCI that enabled the generation of click-commands for spelling words and call-caregiver signals.
View Article and Find Full Text PDFBackground: Brain-computer interfaces (BCIs) can restore communication for movement- and/or speech-impaired individuals by enabling neural control of computer typing applications. Single command click detectors provide a basic yet highly functional capability.
Methods: We sought to test the performance and long-term stability of click decoding using a chronically implanted high density electrocorticographic (ECoG) BCI with coverage of the sensorimotor cortex in a human clinical trial participant (ClinicalTrials.
Objective: Brain-Computer Interfaces (BCIs) hold significant promise for restoring communication in individuals with partial or complete loss of the ability to speak due to paralysis from amyotrophic lateral sclerosis (ALS), brainstem stroke, and other neurological disorders. Many of the approaches to speech decoding reported in the BCI literature have required time-aligned target representations to allow successful training - a major challenge when translating such approaches to people who have already lost their voice.
Approach: In this pilot study, we made a first step toward scenarios in which no ground truth is available.