Publications by authors named "N E C van Klink"

During discourse comprehension, every new word adds to an evolving representation of meaning that accumulates over consecutive sentences and constrains the next words. To minimize repetition and utterance length, languages use pronouns, like the word "she," to refer to nouns and phrases that were previously introduced. It has been suggested that language comprehension requires that pronouns activate the same neuronal representations as the nouns themselves.

View Article and Find Full Text PDF

Objective: Ictal SPECT can be used as an estimate for the epileptogenic zone in people with focal epilepsy. Subtraction of ictal and interictal SPECT scans reveals the area with significant ictal hyperperfusion. Some methods use a control database to also correct for physiological variance.

View Article and Find Full Text PDF

Cyanamides have emerged as privileged scaffolds in covalent inhibitors of deubiquitinating enzymes (DUBs). However, many compounds with a cyanopyrrolidine warhead show cross-reactivity toward small subsets of DUBs or toward the protein deglycase PARK7/DJ-1, hampering their use for the selective perturbation of a single DUB in living cells. Here, we disclose N'-alkyl,N-cyanopiperazines as structures for covalent enzyme inhibition with exceptional specificity for the DUB UCHL1 among 55 human deubiquitinases and with effective target engagement in cells.

View Article and Find Full Text PDF

Brain surgery is the only curative treatment for people with focal epilepsy, but it is unclear whether this induces active disease in multiple sclerosis (MS). This creates a barrier to evaluate MS patients for epilepsy surgery. We present two cases of successful epilepsy surgery in patients with pharmacoresistant epilepsy and stable MS and give an overview of the existing literature.

View Article and Find Full Text PDF

Magneto- and electroencephalography (MEG/EEG) are important techniques for the diagnosis and pre-surgical evaluation of epilepsy. Yet, in current cryogen-based MEG systems the sensors are offset from the scalp, which limits the signal-to-noise ratio (SNR) and thereby the sensitivity to activity from deep structures such as the hippocampus. This effect is amplified in children, for whom adult-sized fixed-helmet systems are typically too big.

View Article and Find Full Text PDF