Enantioselective hydrogenation of olefins by Rh-based chiral catalysts has been extensively studied for more than 50 years. Naively, one would expect that everything about this transformation is known and that selecting a catalyst that induces the desired reactivity or selectivity is a trivial task. Nonetheless, ligand engineering or selection for any new prochiral olefin remains an empirical trial-error exercise.
View Article and Find Full Text PDFArtificial Intelligence is revolutionizing many aspects of the pharmaceutical industry. Deep learning models are now routinely applied to guide drug discovery projects leading to faster and improved findings, but there are still many tasks with enormous unrealized potential. One such task is the reaction yield prediction.
View Article and Find Full Text PDFThis work introduces , a new algorithm for reaction atom-to-atom mapping (AAM) based on a transformer neural network adopted for the direct processing of molecular graphs as sets of atoms and bonds, as opposed to SMILES/SELFIES sequence-based approaches, in combination with the Bidirectional Encoder Representations from Transformers (BERT) network. The graph transformer serves to extract molecular features that are tied to atoms and bonds. The BERT network is used for chemical transformation learning.
View Article and Find Full Text PDFFinding synthesis routes for molecules of interest is essential in the discovery of new drugs and materials. To find such routes, computer-assisted synthesis planning (CASP) methods are employed, which rely on a single-step model of chemical reactivity. In this study, we introduce a template-based single-step retrosynthesis model based on Modern Hopfield Networks, which learn an encoding of both molecules and reaction templates in order to predict the relevance of templates for a given molecule.
View Article and Find Full Text PDF