Translesion synthesis (TLS) is a cellular mechanism through which actively replicating cells recruit specialized, low-fidelity DNA polymerases to damaged DNA to allow for replication past these lesions. REV1 is one of these TLS DNA polymerases that functions primarily as a scaffolding protein to organize the TLS heteroprotein complex and ensure replication occurs in the presence of DNA lesions. The C-Terminal domain of REV1 (REV1-CT) forms many protein-protein interactions (PPIs) with other TLS polymerases, making it essential for TLS function and a promising drug target for anti-cancer drug development.
View Article and Find Full Text PDFA solid understanding of fractions is the cornerstone for acquiring proficiency with rational numbers and paves the way for learning advanced mathematical concepts such as algebra. Fraction difficulties limit not only students' educational and vocational opportunities but also their ability to solve everyday problems. Students who exit sixth grade with inadequate understanding of fractions may experience far-reaching repercussions that lead to lifelong avoidance of mathematics.
View Article and Find Full Text PDFUnlabelled: Small cell lung cancer (SCLC) presents as a highly chemosensitive malignancy but acquires cross-resistance after relapse. This transformation is nearly inevitable in patients but has been difficult to capture in laboratory models. Here, we present a preclinical system that recapitulates acquired cross-resistance, developed from 51 patient-derived xenograft (PDX) models.
View Article and Find Full Text PDFIntroduction: Antimicrobial resistance (AMR) is a major public health threat. Improving antimicrobial use is the main strategy against AMR, but it is challenging to implement especially in low-resource settings. Thus, this review aims to explore the efficacy of telehealth-based antimicrobial stewardship programs (ASP), which is more accessible.
View Article and Find Full Text PDF