Proc Natl Acad Sci U S A
November 2014
We study the equilibrium liquid structure and dynamics of dilute and concentrated bovine eye lens α-crystallin solutions, using small-angle X-ray scattering, static and dynamic light scattering, viscometry, molecular dynamics simulations, and mode-coupling theory. We find that a polydisperse Percus-Yevick hard-sphere liquid-structure model accurately reproduces both static light scattering data and small-angle X-ray scattering liquid structure data from α-crystallin solutions over an extended range of protein concentrations up to 290 mg/mL or 49% vol fraction and up to ca. 330 mg/mL for static light scattering.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2013
In the real world, diffusion-limited reactions in chemistry and biology mostly occur in crowded environments, such as macromolecular complex formation in the cell. Despite the paramount importance of such phenomena, theoretical approaches still mainly rely on the Smoluchowski theory, only valid in the infinite dilution limit. In this paper we introduce a novel theoretical framework to describe the encounter rate and the stationary density profiles for encounters between an immobilized target and a fluid of interacting spherical particles, valid in the local density approximation.
View Article and Find Full Text PDFA model potential for colloidal building blocks is defined with two different types of attractive surface sites, described as complementary patches and antipatches. A Bernal spiral is identified as the global minimum for clusters with appropriate arrangements of three patch-antipatch pairs. We further derive a minimalist design rule with only one patch and antipatch, which also produces a Bernal spiral.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2012
Spherically collapsing cavitation bubbles produce a shock wave followed by a rebound bubble. Here we present a systematic investigation of the energy partition between the rebound and the shock. Highly spherical cavitation bubbles are produced in microgravity, which suppresses the buoyant pressure gradient that otherwise deteriorates the sphericity of the bubbles.
View Article and Find Full Text PDFUnderstanding and, ultimately, controlling the properties of amorphous materials is one of the key goals of material science. Among the different amorphous structures, a very important role is played by colloidal gels. It has been only recently understood that colloidal gels are the result of the interplay between phase separation and arrest.
View Article and Find Full Text PDF