Publications by authors named "N Domke"

Objective: Corneal thickness and deformation seem to have a considerable influence on intraocular pressure measurement. Due to differences in the corneal deformation in either non-contact tonometry or applanation tonometry, both methods should be compared in the same patient group depending on central corneal thickness.

Methods: In 106 eyes of 55 patients (18 males, 37 females, age 17-89 years, mean 63.

View Article and Find Full Text PDF

Type IV secretion systems mediate the translocation of virulence factors (proteins and/or DNA) from Gram-negative bacteria into eukaryotic cells. A complex of 11 conserved proteins (VirB1-VirB11) spans the inner and the outer membrane and assembles extracellular T-pili in Agrobacterium tumefaciens. Here we report a sequence of protein interactions required for the formation of complexes between VirB2 and VirB5, which precedes their incorporation into pili.

View Article and Find Full Text PDF

Type IV secretion systems mediate conjugative plasmid transfer as well as the translocation of virulence factors from various gram-negative pathogens to eukaryotic host cells. The translocation apparatus consists of 9 to 12 components, and the components from different organisms are believed to have similar functions. However, orthologs to proteins of the prototypical type IV system, VirB of Agrobacterium tumefaciens, typically share only 15 to 30% identical amino acids, and functional complementation between components of different type IV secretion systems has not been achieved.

View Article and Find Full Text PDF

Expression of the virB operon, encoding the type IV secretion system required for Brucella suis virulence, occurred in the acidic phagocytic vacuoles of macrophages and could be induced in minimal medium at acidic pH values. To analyze the production of VirB proteins, polyclonal antisera against B. suis VirB5 and VirB8 were generated.

View Article and Find Full Text PDF

The VirB/D4 type IV secretion system of Agrobacterium tumefaciens translocates virulence factors (VirE2, VirF, and the VirD2-T-DNA complex) to plant cells. The membrane-bound translocation machinery consists of 12 proteins (VirB1-11 and VirD4) required for substrate translocation. Protein-protein interactions in the membranes were analyzed after extraction with the mild detergent dodecyl-beta-d-maltoside followed by separation under native conditions.

View Article and Find Full Text PDF