Targeted delivery and cell-type-specific expression of gene-editing proteins in various cell types in vivo represent major challenges for all viral and non-viral delivery platforms developed to date. Here, we describe the development and analysis of artificial vectors for intravascular delivery (AVIDs), an engineered adenovirus-based gene delivery platform that allows for highly targeted, safe, and efficient gene delivery to human hematopoietic stem and progenitor cells (HSPCs) in vivo after intravenous vector administration. Due to a set of refined structural modifications, intravenous administration of AVIDs did not trigger cytokine storm, hepatotoxicity, or thrombocytopenia.
View Article and Find Full Text PDFBackground And Purpose: Acute ischemic stroke and large vessel occlusion can be concurrent with the coronavirus disease 2019 (COVID-19) infection. Outcomes after mechanical thrombectomy (MT) for large vessel occlusion in patients with COVID-19 are substantially unknown. Our aim was to study early outcomes after MT in patients with COVID-19.
View Article and Find Full Text PDFPurpose: The limited knowledge of the molecular alterations that characterize poorly differentiated neuroendocrine carcinomas has limited the clinical development of targeted agents directed to driver mutations. Here we aim to identify new molecular targets in colon neuroendocrine carcinomas (co-NEC) and proof the efficacy of matching drugs.
Experimental Design: We performed a multi-omic analysis of co-NEC to identify genetic or epigenetic alterations that could be exploited as effective drug targets.
For decades, cationic polymer nanoparticles have been investigated for nucleic acid delivery. Despite promising in vitro transfection results, most formulations have failed to translate into the clinic due to significant in vivo toxicity - especially when delivered intravenously. To address this significant problem, we investigated the detailed mechanisms that govern the complex in vivo systemic toxicity response to common polymeric nanoparticles.
View Article and Find Full Text PDF