Publications by authors named "N Delhaye-Bouchaud"

In humans, the nervous system is induced during the third gestational week by molecular signals coming from the mesoderm, which modulate the temporal and spatial expression of specific genes in the cells of the dorsal ectoderm. The induced neural plate closes to form the neural tube where the cells actively proliferate in the germinal zone. The neuroblasts which have completed their last division migrate along the fibers of the radial glia to which they adhere, and this movement is essential to establish the normal cerebral organization.

View Article and Find Full Text PDF

The staggerer (Rora(sg/sg)) mutation is a deletion in the RORalpha gene, one member of a family of nuclear receptor genes related to the retinoic acid receptor. Recently Steinmayr et al. (Proc.

View Article and Find Full Text PDF

Staggerer (Rora(sg/sg)) is an autosomal mutation in an orphan nuclear hormone receptor gene, RORalpha, that acts intrinsically within the Purkinje cells and causes dysgenesis of the cerebellar cortex. Purkinje cell number is severely reduced, and the surviving cells are small with poorly developed dendrites. In contrast, the cytoarchitecture of the cerebellar cortex of the heterozygous staggerer (Rora(+/sg)) appears to be normal.

View Article and Find Full Text PDF

The Lurcher (Lc) mutation in the delta2 glutamate receptor gene leads to the presence of a constitutive inward current in the cerebellar Purkinje cells of Lurcher heterozygous mice and to the postnatal degeneration of these neurons. In addition, cerebellar granule cells and olivary neurons of Lc/+ mice die as an indirect effect of the mutation after the loss of their target Purkinje cells. The apoptotic nature of Lc/+ Purkinje cell death remains controversial.

View Article and Find Full Text PDF

Healthy brain neurons co-express Alzheimer's disease (AD) related proteins presenilins (PS) and beta-amyloid precursor protein (beta-APP). Deposition of beta-amyloid and PS in the senile plaques of AD brain and their ability to interact in vitro suggest that AD pathology could arise from a defect in the physiological interactions between beta-APP and PS within and/or between neurons. The present study compares the immunocytochemical distribution of PS (1 and 2) and beta-APP major isoforms (695 and 751/770) in the synapses of the cerebellum and hippocampus of the adult rat and mouse.

View Article and Find Full Text PDF