Publications by authors named "N Debnath"

Predicting whether a patient with cancer will benefit from immune checkpoint inhibitors (ICIs) without resorting to advanced genomic or immunologic assays is an important clinical need. To address this, we developed and evaluated SCORPIO, a machine learning system that utilizes routine blood tests (complete blood count and comprehensive metabolic profile) alongside clinical characteristics from 9,745 ICI-treated patients across 21 cancer types. SCORPIO was trained on data from 1,628 patients across 17 cancer types from Memorial Sloan Kettering Cancer Center.

View Article and Find Full Text PDF

Plant photosynthetic machinery is the main source of acquisition and conversion of solar energy to chemical energy with the capacity for autonomous self-repair. However, the major limitation of the chloroplast photosystem is that it can absorb light only within the visible range of the spectrum, which is roughly 50% of the incident solar radiation. Moreover, the photosynthetic apparatus is saturated by less than 10% of available sunlight.

View Article and Find Full Text PDF

Changes in the epidemiology and ecology of H5N1 highly pathogenic avian influenza are devastating wild bird and poultry populations, farms and communities, and wild mammals worldwide. Having originated in farmed poultry, H5N1 viruses are now spread globally by wild birds, with transmission to many mammal and avian species, resulting in 2024 in transmission among dairy cattle with associated human cases. These ecological changes pose challenges to mitigating the impacts of H5N1 highly pathogenic avian influenza on wildlife, ecosystems, domestic animals, food security, and humans.

View Article and Find Full Text PDF

Aims: In this study, the antifungal efficacy and phytotoxicity of silica coated porous zinc oxide nanoparticle (SZNP) were analyzed as this nanocomposite was observed to be a suitable platform for slow release fungicides and has the promise to bring down the dosage of other agrochemicals as well.

Methods And Results: Loading and release kinetics of tricyclazole, a potent fungicide, were analyzed by measuring surface area (SBET) using Brunauer-Emmett-Teller (BET) isotherm and liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively. The antifungal efficacy of ZnO nanoparticle (ZNP) and SZNP was investigated on two phytopathogenic fungi (Alternaria solani and Aspergillus niger).

View Article and Find Full Text PDF