Background/objectives: Optical coherence tomography (OCT) uses low coherence interferometry to obtain depth-resolved tissue reflectivity profiles (M-mode) and transverse beam scanning to create images of two-dimensional tissue morphology (B-mode). Endoscopic OCT imaging probes typically employ proximal or distal mechanical beam scanning mechanisms that increase cost, complexity, and size. Here, we demonstrate in the gastrointestinal (GI) tracts of unsedated human patients, that a passive, single-fiber probe can be used to guide device placement, conduct device-tissue physical contact sensing, and obtain two-dimensional OCT images via M-to-B-mode conversion.
View Article and Find Full Text PDFAntimicrob Agents Chemother
March 2015
Human cytomegalovirus (HCMV) is the most common infection causing poor outcomes among transplant recipients. Maternal infection and transplacental transmission are major causes of permanent birth defects. Although no active vaccines to prevent HCMV infection have been approved, passive immunization with HCMV-specific immunoglobulin has shown promise in the treatment of both transplant and congenital indications.
View Article and Find Full Text PDFPurpose: In order to improve the in vitro and in vivo efficacy of an integrin antagonist (IA) of the extracellular domain of the alphavbeta3 integrin, a receptor upregulated on tumor neovasculature, the IA was attached to the surface of a dextran-coated liposome (DCL). IA-DCLs were characterized in vitro, and the pharmacokinetic and antitumor properties were assessed in vivo.
Methods: The in vitro binding properties were measured with purified integrin, endothelial cells, and melanoma cells.
Purpose: Integrin alpha(v)beta(3) and vascular endothelial growth factor receptor 2 (Flk-1) have been shown to be involved in tumor-induced angiogenesis. Selective targeting of upregulated alpha(v)beta(3) and Flk-1 on the neovasculature of tumors is a novel antiangiogenesis strategy for treating a wide variety of solid tumors. In the studies described here, we investigated the potential therapeutic efficacy of two three-component treatment regimens using two murine tumor models.
View Article and Find Full Text PDFBackground: Simplified and cost-effective methods for the detection and quantification of nucleic acid targets are still a challenge in molecular diagnostics.
Methods: Luminescent oxygen channeling assay (LOCI(TM)) latex particles can be conjugated to synthetic oligodeoxynucleotides and hybridized, via linking probes, to different DNA targets. These oligomer-conjugated LOCI particles survive thermocycling in a PCR reaction and allow quantified detection of DNA targets in both real-time and endpoint formats.